456 research outputs found

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon

    Effect of the Pauli principle on photoelectron spin transport in p+p^+ GaAs

    Full text link
    In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly-focussed light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about 2  μm2 \; \mu m from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photo-electron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and bandgap renormalization are negligible due to electrostatic screening by the hole gas

    Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density

    Full text link
    Carrier and spin recombination are investigated in p-type GaAs of acceptor concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly neutral and photoelectrons can either recombine with holes bound to acceptors (e-A0 line) or form excitons which are mostly trapped on neutral acceptors forming the (A0X) complex. It is found that the spin lifetime is shorter for electrons that recombine through the e-A0 transition due to spin relaxation generated by the exchange scattering of free electrons with either trapped or free holes, whereas spin flip processes are less likely to occur once the electron forms with a free hole an exciton bound to a neutral acceptor. An increase of exci- tation power induces a cross-over to a regime where the bimolecular band-to-band (b-b) emission becomes more favorable due to screening of the electron-hole Coulomb interaction and ionization of excitonic complexes and free excitons. Then, the formation of excitons is no longer possible, the carrier recombination lifetime increases and the spin lifetime is found to decrease dramatically with concentration due to fast spin relaxation with free photoholes. In this high density regime, both the electrons that recombine through the e-A0 transition and through the b-b transition have the same spin relaxation time.Comment: 4 pages, 5 figure

    Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces

    Full text link
    The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are compared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant

    Kernel functions and B\"acklund transformations for relativistic Calogero-Moser and Toda systems

    Full text link
    We obtain kernel functions associated with the quantum relativistic Toda systems, both for the periodic version and for the nonperiodic version with its dual. This involves taking limits of previously known results concerning kernel functions for the elliptic and hyperbolic relativistic Calogero-Moser systems. We show that the special kernel functions at issue admit a limit that yields generating functions of B\"acklund transformations for the classical relativistic Calogero-Moser and Toda systems. We also obtain the nonrelativistic counterparts of our results, which tie in with previous results in the literature.Comment: 76 page

    Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt

    Full text link
    The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V applied to the GaAs. This decrease is a result of the drop in the photoelectron spin polarization that results from a reduction in the GaAs surface recombination velocity. The sign of A changes with that of the Cobalt magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%

    Absence of an intrinsic value for the surface recombination velocity in doped semiconductors

    Full text link
    A self-consistent expression for the surface recombination velocity SS and the surface Fermi level unpinning energy as a function of light excitation power (PP) is presented for n- and p-type semiconductors doped above the 1016^{16} cm3^{-3} range. Measurements of SS on p-type GaAs films using a novel polarized microluminescence technique are used to illustrate two limiting cases of the model. For a naturally oxidized surface SS is described by a power law in PP whereas for a passivated surface S1S^{-1} varies logarithmically with PP. Furthermore, the variation in SS with surface state density and bulk doping level is found to be the result of Fermi level unpinning rather than a change in the intrinsic surface recombination velocity. It is concluded that SS depends on PP throughout the experimentally accessible range of excitation powers and therefore that no instrinsic value can be determined. Previously reported values of SS on a range of semiconducting materials are thus only valid for a specific excitation power.Comment: 10 pages, 7 figure

    Operator ordering in Two-dimensional N=1 supersymmetry with curved manifold

    Full text link
    We investigate an operator ordering problem in two-dimensional N=1 supersymmetric model which consists of n real superfields. There arises an operator ordering problem when the target space is curved. We have to fix the ordering in quantum operator properly to obtain the correct supersymmetry algebra. We demonstrate that the super-Poincar\'{e} algebra fixes the correct operator ordering. We obtain a supercurrent with correct operator ordering and a central extension of supersymmetry algebra.Comment: 7 page

    Peculiarities of the hidden nonlinear supersymmetry of Poschl-Teller system in the light of Lame equation

    Full text link
    A hidden nonlinear bosonized supersymmetry was revealed recently in Poschl-Teller and finite-gap Lame systems. In spite of the intimate relationship between the two quantum models, the hidden supersymmetry in them displays essential differences. In particular, the kernel of the supercharges of the Poschl-Teller system, unlike the case of Lame equation, includes nonphysical states. By means of Lame equation, we clarify the nature of these peculiar states, and show that they encode essential information not only on the original hyperbolic Poschl-Teller system, but also on its singular hyperbolic and trigonometric modifications, and reflect the intimate relation of the model to a free particle system.Comment: 10 pages, typos corrected; to appear in J. Phys.
    corecore