87 research outputs found
On the Nature of Unconfirmed Supernovae
We study the nature of 39 unconfirmed supernovae (SNe) from the sky area
covered by the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8), using
available photometric and imaging data and intensive literature search. We
confirm that 21 objects are real SNe, 2 are Galactic stars, 4 are probable SNe,
and 12 remain unconfirmed events. The probable types for 4 objects are
suggested: 3 SNe are of probable type Ia, and SN 1953H is probable type II SN.
In addition, we identify the host galaxy of SN 1976N and correct the
offsets/coordinates of SNe 1958E, 1972F, and 1976N.Comment: 9 pages, 4 figures, 5 tables, published in Astrophysics (English
translation of Astrofizika
Supernovae in paired galaxies
We investigate the influence of close neighbor galaxies on the properties of
supernovae (SNe) and their host galaxies using 56 SNe located in pairs of
galaxies with different levels of star formation (SF) and nuclear activity. The
mean distance of type II SNe from nuclei of hosts is greater by about a factor
of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are
consistent with previous results compiled with the larger sample. For the first
time it is shown that SNe Ibc are located in pairs with significantly smaller
difference of radial velocities between components than pairs containing SNe Ia
and II. We consider this as a result of higher star formation rate (SFR) of
these closer systems of galaxies.Comment: 2 pages. arXiv admin note: text overlap with arXiv:1312.494
Supernovae and their host galaxies - V. The vertical distribution of supernovae in disc galaxies
We present an analysis of the height distributions of the different types of
supernovae (SNe) from the plane of their host galaxies. We use a well-defined
sample of 102 nearby SNe appeared inside high-inclined (i > 85 deg),
morphologically non-disturbed S0-Sd host galaxies from the Sloan Digital Sky
Survey. For the first time, we show that in all the subsamples of spirals, the
vertical distribution of core-collapse (CC) SNe is about twice closer to the
plane of host disc than the distribution of SNe Ia. In Sb-Sc hosts, the
exponential scale height of CC SNe is consistent with those of the younger
stellar population in the Milky Way (MW) thin disc, while the scale height of
SNe Ia is consistent with those of the old population in the MW thick disc. We
show that the ratio of scale lengths to scale heights of the distribution of CC
SNe is consistent with those of the resolved young stars with ages from ~ 10
Myr up to ~ 100 Myr in nearby edge-on galaxies and the unresolved stellar
population of extragalactic thin discs. The corresponding ratio for SNe Ia is
consistent with the same ratios of the two populations of resolved stars with
ages from a few 100 Myr up to a few Gyr and from a few Gyr up to ~ 10 Gyr, as
well as with the unresolved population of the thick disc. These results can be
explained considering the age-scale height relation of the distribution of
stellar population and the mean age difference between Type Ia and CC SNe
progenitors.Comment: 11 pages, 6 figures, 6 tables, accepted for publication in MNRA
Paired galaxies with different activity levels and their supernovae
We investigate the influence of close neighbor galaxies on the properties of
supernovae (SNe) and their host galaxies using 56 SNe located in pairs of
galaxies with different levels of star formation (SF) and nuclear activity. The
statistical study of SN hosts shows that there is no significant difference
between morphologies of hosts in our sample and the larger general sample of SN
hosts in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). The mean
distance of type II SNe from nuclei of hosts is greater by about a factor of 2
than that of type Ibc SNe. The distributions and mean distances of SNe are
consistent with previous results compiled with the larger sample. For the first
time it is shown that SNe Ibc are located in pairs with significantly smaller
difference of radial velocities between components than pairs containing SNe Ia
and II. We consider this as a result of higher star formation rate (SFR) of
these closer systems of galaxies. SN types are not correlated with the
luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe
with respect to the preferred direction toward neighbor galaxy is found to be
isotropic and independent of kinematical properties of the galaxy pair.Comment: 10 pages, 2 figures, 5 tables, online data, published in Astrophysics
and Space Scienc
The impact of bars on the radial distribution of supernovae in disc galaxies
We present an analysis of the impact of bars on the radial distributions of
the different types of supernovae (SNe) in the stellar discs of host galaxies
with various morphologies. We find that in Sa-Sbc galaxies, the radial
distribution of core-collapse (CC) SNe in barred hosts is inconsistent with
that in unbarred ones, while the distributions of SNe Ia are not significantly
different. At the same time, the radial distributions of both types of SNe in
Sc-Sm galaxies are not affected by bars. We propose that the additional
mechanism shaping the distributions of Type Ia and CC SNe can be explained
within the framework of substantial suppression of massive star formation in
the radial range swept by strong bars, particularly in early-type spirals. The
radial distribution of CC SNe in unbarred Sa-Sbc galaxies is more centrally
peaked and inconsistent with that in unbarred Sc-Sm hosts, while the
distribution of SNe Ia in unbarred galaxies is not affected by host morphology.
These results can be explained by the distinct distributions of massive stars
in the discs of early-and late-type spirals.Comment: 3 pages, 1 figure. This is a brief summary of arXiv:1511.08896,
written for a short contribution in the EWASS-2016 Symposium 16 "Frontiers of
massive-star evolution and core-collapse supernovae
Food waste reduction in supply chains through innovations: a review
Purpose: Agri-food supply chains are facing a number of challenges, which cause inefficiencies resulting in the waste of natural and economic resources, and in negative environmental and social impacts. Food waste (FW) is a result of such inefficiencies and supply chain actors search for economically viable innovations to prevent and reduce it. This study aims to analyse the drivers and the barriers that affect the decision of supply chain operators to adopt innovations (technological ā TI, organisational ā OI and marketing ā MI) to reduce FW. Design/methodology/approach: The analysis was carried out using a four-step approach that included: a literature review to identify factors affecting the decision to adopt innovations; analysis of FW drivers and reduction possibilities along agri-food supply chains through innovations; mapping the results of Steps 1 and 2 and deriving conclusions regarding the factors affecting the adoption of innovations to reduce and prevent FW. Findings: Results show that different types of innovations have a high potential in reducing and preventing FW along the supply chain; however, they still must be economically feasible to be adopted by decision makers in the food supply chain. TI, OI and MI are often interrelated and can trigger each other. When it comes to a combination of different types of innovation to reduce and prevent FW, a good example of combining TI, OI and MI may be observed in the retail sector in Europe. Here, innovative smartphone apps (TI) to promote the sale of products nearing their expiration dates (OI in terms of organising the sales differently and MI in terms of marketing it differently) were developed and adopted via different retailing channels, leading to the creation of a new business model. Practical implications: This study analyses the drivers of FW generation together with the factors affecting the decision to adopt innovations to reduce it and provides solutions to supply chain operators to prevent and reduce FW through different types of innovations. Originality/value: Literature has not systematically addressed innovations aiming at the reduction of FW yet. This paper provides a comprehensive literature review of the determinants of innovation adoption and offers a novel view on the problem of FW reduction by means of innovation, by linking factors affecting the decision to innovate with FW drivers
Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms
Using a sample of 215 supernovae (SNe), we analyze their positions relative
to the spiral arms of their host galaxies, distinguishing grand-design (GD)
spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset
exists between the positions of Ia and core-collapse (CC) SNe relative to the
peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in
GD galaxies, the positions of CC SNe relative to the peaks of arms are
correlated with the radial distance from the galaxy nucleus. Inside (outside)
the corotation radius, CC SNe are found closer to the inner (outer) edge. No
such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either
galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of
the arms than do SNe II, while in NGD galaxies they are more concentrated
towards the peaks of arms. In both samples of hosts, the distributions of SNe
Ia relative to the arms have broader wings. These observations suggest that
shocks in spiral arms of GD galaxies trigger star formation in the leading
edges of arms affecting the distributions of CC SNe (known to have short-lived
progenitors). The closer locations of SNe Ibc vs. SNe II relative to the
leading edges of the arms supports the belief that SNe Ibc have more massive
progenitors. SNe Ia having less massive and older progenitors, have more time
to drift away from the leading edge of the spiral arms.Comment: 19 pages, 10 figures, 11 tables, resubmitted to MNRAS after
addressing referee's comment
Relative frequencies of supernovae versus properties of spiral hosts
In this work, we present an analysis of SNe number ratios in spiral galaxies
with different morphological subtypes, luminosities, sSFR, and metallicities,
to provide important information about the physical properties of the
progenitor populations.Comment: 2 pages, 1 figur
Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals
We present an analysis of the relative frequencies of different supernova
(SN) types in spirals with various morphologies and in barred or unbarred
galaxies. We use a well-defined and homogeneous sample of spiral host galaxies
of 692 SNe from the Sloan Digital Sky Survey in different stages of
galaxy-galaxy interaction and activity classes of nucleus. We propose that the
underlying mechanisms shaping the number ratios of SNe types can be interpreted
within the framework of interaction-induced star formation, in addition to the
known relations between morphologies and stellar populations. We find a strong
trend in behaviour of the NIa/NCC ratio depending on host morphology, such that
early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad
bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing
from normal, perturbed to interacting galaxies, then declines in merging
galaxies, whereas it jumps to the highest value in post-merging/remnant
galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging
galaxies and slightly declines in post-merging/remnant subsample. The
interpretation is that the star formation rates and morphologies of galaxies,
which are strongly affected in the final stages of interaction, have an impact
on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases
(decreases) from star-forming to active galactic nuclei (AGN) classes of
galaxies. These variations are consistent with the scenario of an
interaction-triggered starburst evolving into AGN during the later stages of
interaction, accompanied with the change of star formation and transformation
of the galaxy morphology into an earlier type.Comment: 14 pages, 9 figures, 16 tables, online dat
- ā¦