1,926 research outputs found

    The Tully-Fisher relation of distant field galaxies

    Full text link
    We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or alternatively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)Comment: 14 pages, 10 figures, accepted by MNRA

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness

    Star formation rates and chemical abundances of emission line galaxies in intermediate-redshift clusters

    Full text link
    We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates and the chemical and ionsiation properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disk galaxies with M_{B}<-20, in clusters with redshifts in the range 0.31< z <0.59, with a median of =0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al. (2006), and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. (2000). From our optical spectra we measure the equivalent widths of OII, Hbeta and OIII emission lines to determine diagnostic line ratios, oxygen abundances, and extinction-corrected star formation rates. The star-forming galaxies in intermediate-redshift clusters display emission line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the star-formation rates per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star-formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.Comment: 10 pages, 6 figures, MNRAS in pres

    Evolution of Cluster Ellipticals at 0.2 < z < 1.2 from Hubble Space Telescope Imaging

    Get PDF
    Two-dimensional surface photometry derived from Hubble Space Telescope imaging is presented for a sample of 225 early-type galaxies (assumed to be cluster members) in the fields of 9 clusters at redshifts 0.17<z<1.210.17 < z < 1.21. The 94 luminous ellipticals (MAB(B)<−20M_{AB}(B)<-20; selected by morphology alone with no reference to color) form tight sequences in the size-luminosity plane. The position of these sequences shifts, on average, with redshift so that an object of a given size at z=0.55 is brighter by ΔM(B)=−0.57±0.13\Delta M(B)=-0.57 \pm 0.13 mag than its counterpart (measured with the same techniques) in nearby clusters. At z=0.9 the shift is ΔM(B)=−0.96±0.22\Delta M(B)=-0.96 \pm 0.22 mag. If the relation between size and luminosity is universal so that the local cluster galaxies represent the evolutionary endpoints of those at high redshift, and if the size-luminosity relation is not modified by dynamical processes then this population of galaxies has undergone significant luminosity evolution since z=1 consistent with expectations based on models of passively evolving, old stellar populations.Comment: 7 pages, 3 figures, and 1 Tabl

    The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy

    Full text link
    We have carried out spectroscopic observations in 4 cluster fields using Subaru's FOCAS multi-slit spectrograph and obtained spectra for 103 bright disk field and cluster galaxies at 0.06≤z≤1.200.06 \le z \le 1.20. Seventy-seven of these show emission lines, and 33 provide reasonably-secure determinations of the galaxies' rotation velocity. The rotation velocities, luminosities, colours and emission-line properties of these galaxies are used to study the possible effects of the cluster environment on the star-formation history of the galaxies. Comparing the Tully-Fisher relations of cluster and field galaxies at similar reshifts we find no measurable difference in rest-frame BB-band luminosity at a given rotation velocity (the formal difference is 0.18±0.330.18\pm0.33 mag). The colours of the cluster emission line galaxies are only marginally redder in rest-frame B−VB-V (by 0.06±0.040.06\pm0.04 mag) than the field galaxies in our sample. Taken at face value, these results seem to indicate that bright star-forming cluster spirals are similar to their field counterparts in their star-formation properties. However, we find that the fraction of disk galaxies with absorption-line spectra (i.e., with no current star formation) is larger in clusters than in the field by a factor of ∼3\sim3--5. This suggests that the cluster environment has the overall effect of switching off star formation in (at least) some spiral galaxies. To interpret these observational results, we carry out simulations of the possible effects of the cluster environment on the star-formation history of disk galaxies and thus their photometric and spectroscopic properties. Finally, we evaluate the evolution of the rest-frame absolute BB-band magnitude per unit redshift at fixed rotation velocity.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    Variations in association of nasal microbiota with virulent and non-virulent strains of Glaesserella (Haemophilus) parasuis in weaning piglets

    Get PDF
    International audienceAbstractGlaesserella (formerly Haemophilus) parasuis causes Glässer’s disease, which results in high economic loss in the swine industry. To understand the polymicrobial interactions of G. parasuis and the nasal microbiota, the statistical association patterns of nasal colonizing bacteria with virulent and non-virulent strains of G. parasuis were studied accounting for the farm management practices as potential risk factors for the occurrence of Glässer’s disease. The nasal microbiota from 51 weaned-piglets from four farms with Glässer’s disease and three farms with no respiratory diseases was previously characterized and included in this study. The presence of virulent and/or non-virulent G. parasuis strains in the nasal cavities was determined in order to establish the potential association with other members of the nasal microbiota. Multivariate logistic and linear regression models were performed among the various members of nasal microbiota and G. parasuis. The multi-site production system and disease presence in the farm were both significantly associated with the presence of G. parasuis virulent strains in the nose of the piglets. Differential bacterial associations were observed with virulent or non-virulent G. parasuis. Chitinophagaceae, Corynebacteriaceae and Corynebacterium were positively associated with the virulent G. parasuis strains, while Enterobacteriaceae, Peptostreptococcaceae, Clostridium XI, and Escherichia/Shigella were negatively associated with virulent G. parasuis. On the other hand, Flavobacteriaceae, Planobacterium, and Phascolarctobacterium were positively associated with the non-virulent G. parasuis strains, while Rikenellaceae, Enterococcaceae, Odoribacter, and Corynebacterium were negatively associated with non-virulent G. parasuis. In conclusion, the nasal microbiota communities showed variations in the association with the G. parasuis strains type
    • …
    corecore