90 research outputs found
A General Buffer Scheme for the Windows Scheduling Problem
Broadcasting is an efficient alternative to unicast for delivering popular on-demand media requests. Broadcasting schemes that are based on windows scheduling algorithms provide a way to satisfy all requests with both low bandwidth and low latency. Consider a system of n pages that need to be scheduled (transmitted) on identical channels an infinite number of times. Time is slotted, and it takes one time slot to transmit each page. In the windows scheduling problem (WS) each page i, 1 ≤ i ≤ n, is associated with a request window wi. In a feasible schedule for WS, page i must be scheduled at least once in any window of wi time slots. The objective function is to minimize the number of channels required to schedule all the pages. The main contribution of this paper is the design of a general buffer scheme for the windows scheduling problem such that any algorithm for WS follows this scheme. As a result, this scheme can serve as a tool to analyze and/or exhaust all possible WS-algorithms. The buffer scheme is based on modelling the system as a nondeterministic finite state machine in which any directed cycle corresponds to a legal schedule and vice-versa. Since WS is NP-hard, w
A computational analysis of lower bounds for big bucket production planning problems
In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing
The authors would like to thank the support on this research by the CRISP Project (Combinatorial Responses In Stress Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR) Initiative.Peer reviewedPublisher PD
Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities
Equilibrium pricing and ordering policies in a two-echelon supply chain in the presence of strategic customers
Simulated annealing methods with general acceptance probabilities
Heuristic solution methods for combinatorial optimization problems are often based on local neighborhood searches. These tend to get trapped in a local optimum and the final result is often heavily dependent on the starting solution. Simulated annealing methods attempt to avoid these problems by randomizing the procedure so as to allow for occasional changes that worsen the solution. In this paper we provide probabilistic analyses of different designs of these methods.</jats:p
Rejoinder to "Comments on One-Warehouse Multiple Retailer Systems with Vehicle Routing Costs"
No abstract available.
- …
