
Fair Hitting Sequence problem: scheduling
activities with varied frequency requirements?

Serafino Cicerone1, Gabriele Di Stefano2, Leszek Gasieniec3,
Tomasz Jurdzinski4, Alfredo Navarra5, Tomasz Radzik6, and

Grzegorz Stachowiak7

1 University of L’Aquila, Italy, serafino.cicerone@univaq.it
2 University of L’Aquila, Italy, gabriele.distefano@univaq.it

3 University of Liverpool, U.K., l.a.gasieniec@liverpool.ac.uk
4 University of Wroclaw, Poland, tomasz.jurdzinski@uwr.edu.pl

5 University of Perugia, Italy, alfredo.navarra@unipg.it
6 King’s College London, U.K., tomasz.radzik@kcl.ac.uk

7 University of Wroclaw, Poland, gst@ii.uni.wroc.pl

Abstract. Given a set V = {v1, . . . , vn} of n elements and a family
{S1, S2, . . . , Sm} of (possibly intersecting) subsets of V , we consider a
scheduling problem of perpetual monitoring (attending) these subsets.
In each time step one element of V is visited, and all sets containing v
are considered to be attended during this step. That is, we assume that
it is enough to visit an arbitrary element in Sj to attend to this whole
set. Each set Sj has an urgency factor hj , which indicates how frequently

this set should be attended relatively to other sets. Let t
(j)
i denote the

time slot when set Sj is attended for the i-th time. The objective is
to find a perpetual schedule of of visiting the elements of V , i.e. an
infinite sequence of elements to visit in consecutive steps, so that the
maximum value hj(t

(j)
i+1 − t

(j)
i) is minimized. The value hj(t

(j)
i+1 − t

(j)
i)

indicates how urgent it was to attend to set Sj at the time slot t
(j)
i+1.

We call this problem the Fair Hitting Sequence (FHS) problem, as it is
related to the minimum hitting set problem. In fact, the uniform FHS
(all urgency factors are equal) is equivalent to the minimum hitting set
problem, implying that there exists a constant c0 > 0 such that it is
NP-hard to compute (c0 logm)-approximation schedules for FHS.
We demonstrate that scheduling based on one hitting set can give poor
approximation ratios, even if an optimal hitting set is used. To counter
this, we design a deterministic algorithm which partitions the family of
sets Sj into sub-families and combines hitting sets of those sub-families,
giving O(log2 m)-approximate schedules. Finally, we show a lower bound
on the optimal objective value of FHS and use this bound to derive a
randomized algorithm which computes O(logm)-approximate schedules
with probability 1− 1/m.

Keywords: scheduling; periodic maintenance; hitting set; approxima-
tion algorithms

?
The work has been supported in part by the European project “Geospatial based Environment for
Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE), contract no. H2020-691161
and by the Italian National Group for Scientific Computation GNCS-INdAM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Cicerone et al.

1 Introduction

The combinatorial problem studied in this paper is a natural extension of per-
petual scheduling proposed in [11], where n network nodes need to be indefi-
nitely monitored (visited) by a mobile agent, according to known frequencies.
More precisely, in this problem all n nodes v1, v2, . . . , vn have urgency factors
h1, h2, . . . , hn, respectively, which indicate how often each node should be visited
relatively to other nodes in the network. Two variants of the problem of schedul-
ing visits to nodes were considered in [11]. In the first discrete variant the time
needed to visit each node is assumed to be uniform and it corresponds to a single
round of the monitoring process. The second continuous variant assumes that
the nodes are distributed in a geometric space and the time required to move to
and attend the next node depends on the current location of the mobile agent.
In both cases, when t is the time which has elapsed since the last visit to node
vi, the urgency indicator of this node shows the value t · hi. The objective of
scheduling visits to nodes is to minimise the maximum value ever observed on
the urgency indicators.

Several constant approximation algorithms for the discrete variant and
O(log n) approximation for the continuous variant of this perpetual schedul-
ing problem are discussed in [11] and further work on this problem is presented
in [4, 8]. In [4], the authors consider monitoring by two agents of n nodes lo-
cated on a line and requiring different frequencies of visits. The authors provide
several approximation algorithms concluding with the best currently known

√
3-

approximation.
The perpetual scheduling problem considered in [4, 8, 11] is closely related

to periodic scheduling [22], general Pinwheel scheduling [2, 3], periodic Pinwheel
scheduling [14, 15], and to other problems motivated by Pinwheel scheduling
[20]. This problem is also related to several classical algorithmic problems which
focus on monitoring and mobility. These include the Art Gallery Problem [19]
and its dynamic alternative called the k-Watchmen Problem [17, 23]. In further
work on fence patrolling [5, 6] the authors focus on monitoring vital (possibly
disconnected) parts of a linear environment where each point is expected to
be visited with the same frequency. The authors of [7] study monitoring linear
environments by agents prone to faults.

In this paper we consider a generalization of the perpetual scheduling prob-
lem, where the emphasis is on perpetual monitoring of a given family of sets
{S1, S2, . . . , Sm}, which are (possibly intersecting) subsets of the set of n net-
work nodes. We assume that it is enough to visit an arbitrary node in a set to
attend the whole set. Moreover, by visiting a node we assume that all sets con-
taining this node are attended. Similarly to the discrete variant of the perpetual
scheduling problem studied in [11], here we also schedule visits to nodes, but
now the visits to nodes are just means to attend the sets Sj and the urgency
factors h1, h2, . . . , hm are associated with these sets, not with the nodes.

This scheduling problem is motivated by dissemination (or collection) of in-
formation across different, possibly overlapping, communities in social (media)
networks. A participant of the overall network can provide access to all com-

Fair Hitting Sequence problem 3

munities to which this participant belongs. While a lot of work has been done
on recognition/detection of communities, starting with the seminal studies pre-
sented in [12, 18], much less is known about efficient ways of informing or moni-
toring such communities, especially when the communities are highly overlapping
and dynamic, and have their own frequency requirements (urgency factors). One
way of modeling such problems is to decide whom and when to contact to ensure
regular, but proportionate to the requirements, access to all communities.

Other scenarios motivating our scheduling problem arise in the context of
overlapping sensor or data networks. Consider overlapping (that is, sharing some
nodes) networks S1, S2, . . . , Sm and access nodes v1, v2, . . . , vn. Each node vi is
an access node of one or more networks Si1 , Si2 , . . . , Sik , k ≥ 1. In the context of
our abstract scheduling problem, overlapping networks and overlapping commu-
nities are analogous entities. Each network Sj has a specified required access rate
hj > 0, which indicates how often this network should be accessed (relative to
other networks). If an access node vi is used at the current time slot, then all net-
works Si1 , Si2 , . . . , Sik containing vi are accessed during this time slot. Accessing
a network can be thought of, for example, as gathering data from that network,
or some other service, maintenance or update performed on that network, de-
pending on the application. We want to find a schedule A = (vq1 , . . . , vqt , . . .),
where vqt is the access node used in the time slot t ≥ 1, so that each network is
accessed as often as possible and in a fair way according to the specified access
rates.

We formalize the objective of the regular and fair access to networks in the
following way. When progressing through a schedule A, if a network Sj was
accessed for the last time at a time slot t′, then the number hj (t− t′) indicates
the urgency of accessing this network at the current time slot t > t′. For brevity,
we refer to this number as the urgency indicator of network Sj , or simply as the
(current) urgency or the height of Sj . The urgency indicator of Sj grows with the
rate hj over the time when Sj is not accessed and is reset to 0 when Sj is accessed.
Hence we will refer to numbers hj also as growth rates (of urgency indicators).

We want to find a schedule which minimizes the maximum hj

(
t
(j)
i+1 − t

(j)
i

)
, over

all networks Sj , j = 1, 2, . . . ,m and all i ≥ 0, where t
(j)
i is the i-th time slot

when network Sj is accessed (setting t
(j)
0 ≡ 0). That is, hj

(
t
(j)
i+1 − t

(j)
i

)
is the

height of Sj at the time when this network is (about to be) accessed for the
(i+ 1)-st time.

For a given schedule A = (vq1 , vq2 , . . .) and 1 ≤ j ≤ m, the number

Height(A, j) = sup
{
hj

(
t
(j)
i+1 − t

(j)
i

)
: i ≥ 0

}
(1)

is the maximum value, or the maximum height, of the urgency indicator of Sj ,
when schedule A is followed, and the number

Height(A) = max {Height(A, j) : 1 ≤ j ≤ m} (2)

is the maximum height of any urgency indicator and is called the height of
schedule A. We want to find an optimal schedule Aopt which minimizes (2). We

4 S. Cicerone et al.

refer to this problem as the Fair Hitting Sequence (FHS) problem, and show
below that it includes the hitting set problem as a special case. We say that a
schedule A is ρ-approximate, if Height(A) ≤ ρ ·Height(Aopt).

We denote by V = {v1, v2, . . . , vn} the set of all access nodes (or all par-
ticipants in a social network), which from now on will be simply referred to
as nodes, and we identify each network (or a community) Sj with the set
{vj1 , vj2 , . . . , vjq} ⊆ V of all (access) nodes of this network (or all members
of this community). The simplest, and trivial, instance of the problem FHS is
when m = n, Sj = {vj} and hj = 1, for all 1 ≤ j ≤ n. For this instance a
schedule is optimal if, and only if, it is a repetition of the same permutation of
V . The height of such a schedule is equal to n.

A still special, but more interesting and non-trivial, case is when sets Sj are
arbitrary, with possibly m 6= n, but all hj remain equal to 1. It is not difficult
to see that for such instances of FHS a schedule is optimal if, and only if, it
is a repetition of the same permutation of the same minimum-size hitting set
W ⊆ V . That is, |Sj ∩W | ≥ 1, for each 1 ≤ j ≤ m, and W has the minimum
size among all subsets of V with this property. The height of such optimal
schedule is equal to |W |. NP-hardness of the minimum hitting set problem,
which is equivalent to the minimum cover set problem, implies NP-hardness of
the more general FHS problem. The natural greedy algorithm for the minimum
hitting-set problem, which selects in each iteration a node hitting (belonging to)
the maximum number of the remaining sets Sj , gives an O(logm)-approximate
hitting set. On the other hand, it is known that there is a constant c0 > 0 such
that finding a (c0 logm)-approximate hitting set is NP-hard [21]. This implies
NP-hardness of (c0 logm)-approximation for the more general FHS problem.

Continuing with the case of uniform growth rates, if all sets Sj have size 2,
then such an instance is represented by the graph G = (V,E), where E =
{S1, S2, . . . , Sm}. In this case the FHS problem becomes a problem of efficient
monitoring of the edges of graph G (by visiting veritces of G), which is equivalent
to the vertex cover problem.

Another non-trivial special case of the FHS problem is when Sj = {vj}, for
each 1 ≤ j ≤ n, but the access rates hj are non-uniform. This is the perpetual
scheduling problem considered in [4, 8, 11]. If we further assume that all input
parameters hj are inverses of positive integer numbers, then the question whether
there exists a schedule of height not greater than 1 is known as the Pinwheel
scheduling problem [14].

We are interested in deriving good approximation algorithms for the FHS
problem. While schedules are defined as infinite sequences, it can be shown that
there is always an optimal schedule which has a periodic form Binit(Bperiod)∗,
where Binit and Bperiod are finite schedules (see e.g. [1]). The period of a periodic
optimal schedule can have exponential length, but our approximate algorithms
compute in polynomial time schedules with periods polynomial in m.

If we denote by A(W) the schedule obtained by repeating the same hitting
setW , then the height ofA(W) is at most hmax|W |, where hmax = max1≤j≤m{hj}.
We show in Appendix instances for which theA(W) schedule is onlyΘ(m/ logm)

Fair Hitting Sequence problem 5

approximate. To get better schedules, we have to handle the variations in the
growth rates hj . In Section 2, we present simple O(log2m)-approximate sched-
ules. Such schedules are obtained by partitioning the whole family of sets Sj into
O(logm) sub-families of sets which have similar growth rates, and by combining
O(logm)-approximate hitting sets of these sub-families. To improve further the
approximation ratio of computed schedules, we first derive in Section 3 a lower
bound on the height of any schedule. This lower bound can be viewed as the
optimal solution to a fractional version of the FHS problem. Then we show in
Section 4 a randomized algorithm which uses the optimal fractional solution to
compute schedules which are O(logm)-approximate with high probability.

2 Deterministic O(log2 m)-approximate schedules

In this section, we show a deterministic approximation algorithm for the FHS
problem. The algorithm exploits the properties of schedules which are based on
hitting sets.

2.1 Algorithm based on hitting sets

We first formalize an observation that if there is not much variation among
the growth rates of the sets, then the minimum hitting set gives a good ap-
proximate solution. Consider an input instance with hmax ≤ Chmin, where
hmin = min1≤j≤m{hj} and C ≥ 1 is a parameter. Let Wopt be a minimum
hitting set and compare the heights of the schedule A(Wopt) and an optimal
schedule Aopt. We note that an optimal schedule exists since the schedule A(V)
(the round-robin schedule (v1, v2, . . . , vn)∗) has height nhmax and all (infinitely
many) schedules with heights at most nhmax have heights in the finite set
{ihj : j = 1, 2, . . . ,m, i - positive integer, ihj ≤ hmax · n}.

Let [1, t] be the shortest initial time interval in schedule Aopt when each set
is accessed at least once. We have t ≥ |Wopt|, since the set of nodes used in the
first t time slots in schedule Aopt is a hitting set. Let Sj be any set accessed for
the first time in schedule Aopt at time t. We have

Height(A(Wopt)) ≤ hmax|Wopt| ≤ C hj |Wopt| ≤ C hj t ≤ C ·Height(Aopt),

where the last inequality follows from the fact that in schedule Aopt, the height
of set Sj (that is, the height of its urgency indicator) at time t is equal to
hjt. Thus A(Wopt) is a C-approximate schedule. If Wapx is a D-approximate
hitting set (|Wapx| ≤ D · |Wopt|), then a similar argument shows that A(Wapx)
is a (CD)-approximate schedule. This and the O(logm) approximation of the
greedy algorithm for the hitting set problem give the following lemma.

Lemma 1. If Wapx is a D-approximate hitting set, then the schedule A(Wapx)
is (Dhmax/hmin)-approximate. There is a polynomial-time algorithm which com-
putes O((logm)hmax/hmin)-approximate schedules for the FHS problem.

6 S. Cicerone et al.

If there is considerable variation in the growth rates hj , then the schedule
A(Wopt), which relies on one common minimum hitting set, can be far from
optimal (see the example in Appendix). To get a better approximation, we con-
sider separately sets with similar growth rates. More precisely, we partition the
whole family of sets S = {S1, S2, . . . , Sm} into the following kmax = blogmc+ 1
families.

Fk = {Sj : hmax/2
k < hj ≤ hmax/2

k−1}, for k = 1, 2, . . . , kmax − 1,
Fkmax = {Sj : hj ≤ hmax/2

kmax−1}.

Let Wk be a D-approximate hitting set for the family Fk, 1 ≤ k ≤ kmax − 1,
and let Wkmax be any hitting set for the family Fkmax . For 1 ≤ k ≤ kmax − 1,
the schedule A(Wk), which repeats the same permutation of Wk, is a (2D)-
approximate schedule for the family Fk. Therefore the schedule A′ which is the
interleaving of the schedules A(Wk), for 1 ≤ k ≤ kmax − 1, is a (2D logm)-

approximate schedule for the family of sets
⋃kmax−1
k=1 Fk. This is because the

lengths of the gaps in the schedule A(Wk) between the consecutive accesses
to a set Sj ∈ Fk increase kmax − 1 times in the schedule A′ (some addi-
tional accesses to Sj in A′ may be coming from other schedules A(Wk′), k

′ 6=
k). The schedule A(Wkmax), which repeats the same permutation of Wkmax ,
is a schedule for the family Fkmax

with height at most m
(
hmax/2

kmax−1
)
≤

2hmax ≤ 2 · H(Aopt). Therefore the schedule A which interleaves schedules
A(W1),A(W2), . . . ,A(Wkmax−1),A(Wkmax

) is a 2D(logm+1)-approximate sched-
ule for the whole family of sets Sj .

Theorem 1. The schedule A constructed above using D-approximate hitting
sets is O(D logm) approximate.

Corollary 1. There is a polynomial-time algorithm which computes O(log2m)-
approximate schedules for the FHS problem.

2.2 A tight example for using logm hitting sets

We showed in Section 2.1 that the schedule A which is based on logm hitting
sets computed separately for the groups of sets with similar growth rates is
O(D logm)-approximate, where D is an upper bound on the approximation ratio
of the used hitting sets (Theorem 1). We provide now an instance of FHS such
that even if optimal hitting sets are used, the schedule A is only Θ(logm)-
approximate.

Consider the following instance for the FHS problem, as shown in Figure 1.
Given a large enough integer t > 0, let m = 2t − 1 be the number of sets. The
sets are defined as follows:

– St,i = {vt,i}, for each i = 1, 2, . . . , m+1
2 ;

– S`,i = S`+1,2i−1 ∪S`+1,2i ∪{v`,i}, for each ` = t− 1, t− 2, . . . , 1 and for each
i = 1, 2, . . . , m+1

2t−`+1 .

Fair Hitting Sequence problem 7

vt−1,1

.

v2,2

v1,1

St,m+1
2

vt−1,m+1
4

S1,1

v2,1

St,1

St−1,1

S2,1 S2,2

Fig. 1. An instance of the FHS problem for algorithm A defined in Theorem 1.

For the growth rates, we take h(S`,i) = 1
2` for each ` = t, t − 1, . . . , 1 and

i = 1, 2, . . . , m+1
2t−`+1 .

On this instance, we now compare the performance of optimum schedule with
the schedule A defined in Theorem 1.

The optimum is given by an interleaved round-robin schedule on elements
vt,i, i = 1, ..., m+1

2 . In fact, such vertices represent by construction a hitting
set for the provided instance, and any solution must cover the singletons St,i,
i = 1, ..., m+1

2 , each containing a different vt,i. By interleaved schedule, we mean
the vertices are not picked in sequence but in such a way, given a generic level
`, each set S`,i is served every m+1

2t−`+1 times. For instance, by considering t = 4,
the corresponding schedule will be v4,1, v4,5, v4,3, v4,7, v4,2, v4,6, v4,4, v4,8. This
ensures to keep the maximum height of each level at the same value 1

2 . Hence
such a solution provides a maximum height of 1

2 .

By applying algorithm A, instead, one obtains a maximum height of logm
2 .

In fact, there are m+1
2 sets at level t, with growing rate of 1

2t , each one served
every t times, which gives:

m+ 1

2
· 1

2t
· t =

m+ 1

2
· 1

m+ 1
· log(m+ 1) =

log(m+ 1)

2
.

The approximation ratio is then O(logm) which is tight.

3 A lower bound via the fractional solution

We derive a lower bound on the height of any schedule A of the FHS problem.
Consider a schedule A = (vq1 , . . . , vqt , . . .) in which each Sj , 1 ≤ j ≤ m, is
accessed infinitely many times (otherwise the schedule has infinite height) and
take a large time slot T . We look at the first T slots of schedule A, that is, at the
schedule A[T] = (vq1 , vq2 , . . . , vqT). For i = 1, 2, . . . , n, let zi denote the fraction

8 S. Cicerone et al.

of the time slots 1, 2, . . . , T when the node vi is used, that is, zi = |{1 ≤ t ≤
T : vqt = vi}|/T . For j = 1, 2, . . . ,m, let 1 ≤ t

(j)
1 < t

(j)
2 < · · · < t

(j)
I(j,T) ≤ T

be the time slots in the period [1, T] when Sj is accessed. We assume that T is
large enough so that for each 1 ≤ j ≤ m, I(j, T) ≥ 1, that is, each Sj is accessed

at least once in the period [1, T − 1]. Defining t
(j)
0 = 0 and t

(j)
I(j,T)+1 = T , the

maximum height of Sj = {vj1 , vj2 , . . . , vjq(j)} in the period [1, T] is

Height(A[T], j) = max
{
hj

(
t
(j)
i − t

(j)
i−1

)
: 1 ≤ i ≤ I(j, T) + 1

}
(3)

≥ hj
I(j, T) + 1

i=I(j,T)+1∑
i=1

(
t
(j)
i − t

(j)
i−1

)
=

hjT

I(j, T) + 1
(4)

=
hj

zj1 + zj2 + · · ·+ zjq(j)

I(j, T)

I(j, T) + 1
. (5)

Inequality (4) simply says that the maximum of I(j, T) + 1 numbers is at least
their mean value. The equality on the last line above holds because zjr is the
fraction of the time slots 1, 2, . . . , T when node vjr is used, so zj1 +zj2 + · · ·+zjq
is the fraction of the time slots 1, 2, . . . , T when Sj is accessed, which is equal to
I(j, T)/T > 0. For the height of schedule A, we have

Height(A) ≥ (6)

≥ Height(A[T]) ≡ max{Height(A[T], j) : j = 1, 2, . . . ,m}

≥
(

1− 1

I(T) + 1

)
max

{
hj

zj1 + zj2 + · · ·+ zjq(j)
: j = 1, 2, . . . ,m

}
, (7)

where I(T) = min1≤j≤m{I(j, T)} is the minimum number of times any Sj is
accessed in the period [1, T].

Consider the following linear program. (To get an equivalent proper linear
program, substitite X with 1/Z and maximize Z.)

(P) minimize X;

subject to:

x1 + x2 + · · ·+ xn = 1,

xj1 + xj2 + · · ·+ xjq(j) ≥ hj/X, for each j = 1, 2, . . . ,m, (8)

xi ≥ 0, for i = 1, 2, . . . , n,

X > 0. (9)

Comparing Inequalities (7) with Inequalities (8), we see that by setting x1, x2,

. . . , xn to numbers z1, z2, . . . , zn and X to Height(A)/
(

1− 1
I(T)+1

)
, we satisfy

all constraints of this linear program. Thus denoting by Xopt the minimum fea-

sible value of X in this linear program, we have Height(A) ≥ Xopt

(
1− 1

I(T)+1

)
,

and by increasing T to infinity (so I(T) increases to infinity) we conclude that

Height(A) ≥ Xopt. (10)

Fair Hitting Sequence problem 9

The linear program (P) can be viewed as giving the optimal solution for the
following fractional variant of the FHS problem. For the discrete FHS problem,
a schedule A can be represented by binary values yi,t ∈ {0, 1}, 1 ≤ i ≤ n, t ≥ 1,
with yi,t = 1 indicating that node vi is used in the time slot t. For the fractional
variant of FHS, a schedule is represented by numbers 0 ≤ yi,t ≤ 1 indicating
the fraction of commitment during the time slot t to node vi. (Think about the
nodes being dealt with during the time period (t − 1, t] concurrently, with the
fraction yi,t of the total effort spent on node vi.) In both discrete and fractional
cases we require that

∑n
i=1 yi,t = 1, for each time slot t ≥ 1. For the discrete

variant, the time slot t
(j)
i when Sj is accessed for the i-th time is the time slot

τ such that
τ∑
t=1

(
yj1,t + yj2,t + · · ·+ yjq(j),t

)
= i.

For the fractional variant, the time t
(j)
i when the i-th “cycle” of access to Sj is

completed (and the urgency indicator of Sj is reset to 0) is the fractional time
τ + δ, where τ is a positive integer and 0 ≤ δ < 1, such that

τ∑
t=1

(
yj1,t + yj2,t + · · ·+ yjq(j),t

)
+ δ

(
yj1,τ+1 + yj2,τ+1 + · · ·+ yjq(j),τ+1

)
= i.

In both cases, the fraction of the period (0, T] when a node vi is used is equal to

zi =
(∑T

t=1 yi,t

)
/T and (3)–(7) and (10) apply. For the fractional variant, the

schedule yi,t = x∗i , for 1 ≤ i ≤ n and t ≥ 1, where (x∗1, x
∗
2, . . . , x

∗
n, Xopt) is an

optimal solution of (P), has the optimal (minimum) height Xopt.

4 Randomized O(log m)-approximate algorithm

We use an optimal solution (x∗1, x
∗
2, . . . , x

∗
n, Xopt) of linear program (P) to ran-

domly select nodes for the first T = Θ(m) slots of a schedule A, so that
with high probability each set Sj is accessed at least once during each period
[t + 1, t + τj] ⊆ [1, T], where τj = Θ((Xopt/hj) log n). Thus during the first T
slots of the schedule, the heights of the urgency indicators remain O(Xopt log n).
The full (infinite) schedule keeps repeating the schedule from the first T slots.
In our calculations we assume that m ≥ m0, for a sufficiently large constant m0.

We take T = 2m and construct a random schedule AR = (vq1 , vq2 , . . . , vqT)
for T time slots in the following way. We put aside the even time slots for
some deterministic assignment of nodes. Specifically, for each time slot t = 2j,
j = 1, 2, . . . ,m, we (deterministically) take for the node vqt for this time slot an
arbitrary node in Sj . This way we guarantee that each set Sj is accessed at least
once when the schedule AR is followed. For each odd time slot t, 1 ≤ t ≤ T ,
node vqt is a random node selected according to the distribution (x∗1, x

∗
2, . . . , x

∗
n)

and independently of the selection of other nodes. Thus for each odd time slot
t ∈ [1, T] and for each node vi ∈ V , Pr(vqt = vi) = x∗i .

10 S. Cicerone et al.

Lemma 2. The random schedule AR has the properties that each set Sj,
j = 1, 2, . . . ,m, is accessed at least once and with probability at least 1 − 1/m,
Height(AR) ≤ (5 lnm)Xopt.

Proof. The first property is obvious from the construction. We show that with
probability at least 1 − 1/m, no urgency indicator grows above (5 lnm)Xopt.
A set Sj with the rate growth hj < (2.5Xopt lnm)/m cannot grow above the
height hjT < 5Xopt lnm, so it suffices to look at the growth of the sets Sj with
hj ≥ (2.5 · Xopt lnm)/m. Observe that Xopt ≥ hmax = max{h1, h2, . . . , hm},
from (8).

Let J ⊆ {1, 2, . . . ,m} be the set of indices of the sets Sj for which hj ≥
(2.5 · Xopt lnm)/m. For each j ∈ J and for each odd time slot t ∈ [1, T], the
probability that set Sj is accessed during this time slot is equal to x∗j1 +x∗j2 +· · ·+
x∗jq ≥ hj/Xopt. In each period [t, t + τ − 1] ⊆ [1, T] of τ consecutive time slots,

there are at least bτ/2c odd time slots, so the probability that Sj is not accessed
during this period is at most (1− hj/Xopt)

bτ/2c. We take τj = 5(Xopt/hj) lnm
(observe that lnm ≤ τj ≤ T) and use the union bound over all j ∈ J and all
[t, t + τj − 1] ⊆ [1, T] to conclude that the probability that there is a set Sj ,
j ∈ J , which is not accessed during consecutive τj time slots (and its urgency
indicator goes above (5 lnm)Xopt) is at most

T ·
∑
j∈J

(
1− hj

Xopt

)(τj−1)/2

≤ T ·
∑
j∈J

(
1− hj

Xopt

)2.4(Xopt/hj) lnm

≤ 2m · e−2.4 lnm ≤ 1

m
. ut

Theorem 2. For the infinite schedule A∗R which keeps repeating the same ran-
dom schedule AR (all copies are the same), Height(A∗R) ≤ (10 lnm)Xopt with
probability at least 1− 1/m.

Proof. With probability at least 1−1/m, Height(AR) ≤ (5 lnm)Xopt (Lemma 2).
Assuming that Height(AR) ≤ (5 lnm)Xopt, we show that Height(A∗R) ≤
(10 lnm)Xopt.

Let T = 2m be the length of the schedule AR. We consider an arbitrary
set Sj and show that its height is never greater than (10 lnm)Xopt when the
schedule A∗R is followed. Since Sj is accessed in AR at least once, the height of
Sj under the schedule A∗R is the same at the end of the time slots kT , for all

positive integers k (and is equal to hj

(
T − t(j)last

)
, where t

(j)
last is the last time

slot in AR when Sj is accessed). The maximum height of Sj during the period
[1, T] is at most (5 logm)Xopt. For each integer k ≥ 1, the maximum height of
set Sj during the period [kT + 1, (k+ 1)T] is at most the height of Sj at the end
of time slot kT , which is at most (5 lnm)Xopt, plus the maximum growth of Sj
under the schedule AR, which is again at most (5 lnm)Xopt. Thus the height of
Sj is never greater than (10 lnm)Xopt. ut

Fair Hitting Sequence problem 11

5 Concluding remarks

We studied the Fair Hitting Sequence problem, showing its wide range of applica-
tions. We provide both deterministic and randomized approximation algorithms,
with approximation ratios of O(log2m) and O(logm), respectively. These upper
bounds should be compared with the lower bound of Ω(logm) on the approxima-
tion ratio of polynomial-time algorithms, which is inherited from the well-known
minimum hitting set problem. As a natural question one may ask whether it is
possible to provide a deterministic algorithm with approximation ratio guaran-
tee of O(logm). Due to the deep relation shown for FHS with the hitting set
problem, one may be interested in understanding whether introducing some re-
striction on the sets might result in better approximation ratios. For instance,
interesting cases might be when the size of each set Sj is bounded, when each
element is contained in a bounded number of sets, or when the intersection of
each pair of sets is bounded. In particular, when the size of each set is two, then
the sets can be seen as edges of a graph, as mentioned in Section 1, and one may
consider special graph topologies.

When we consider more than two elements per set, then instead of graphs
we actually deal with hypergraphs. In the finite hypergraph setting, a (minimal)
hitting set of the edges is called a (minimal) transversal of the hypergraph [9].
Fixed-parameter tractability results have been obtained for the related transver-
sal hypergraph recognition problem with a wide variety of parameters, including
vertex degree parameters, hyperedge size or number parameters, and hyperedge
intersection or union size parameters [13]. Concerning special classes of hyper-
graph, it is known that the transversal recognition is solvable in polynomial time
for special cases of acyclic hypergraphs [9, 10]. These results for transversal of
hypergraphs may be useful in further study of the FHS problem.

Furthermore, some variants of the FHS problem may be interesting from the
theoretical or practical point of view. For instance, one may consider the elements
embedded in the plane and the time required by a visiting agent to move from
one element to another defined by the distance between those elements. In such
setting, it may be useful to consider the following geometric version of the hitting
set problem given in [16]. Given a set of geometric objects and a set of points, the
goal is to compute the smallest subset of points that hit all geometric objects.
The authors of [16] provide (1 + ε)-approximation schemes for the minimum
geometric hitting set problem for a wide class of geometric range spaces. It
would be interesting to investigate how these results could be applied in the
wider context of the FHS problem. Finally, further investigations can come from
the variant where sets dynamically evolve, as it would be expected in the context
of evolving communities in a social network.

References

1. S. Anily, C.A. Glass, and R. Hassin, The Scheduling of Maintenance Service, Dis-
crete Applied Mathematics 82(1-3): 27-42 (1998).

12 S. Cicerone et al.

2. M.Y. Chan and F.Y.L. Chin, General schedulers for the pinwheel problem based on
double-integer reduction, IEEE Transactions on Computers, 41(6):755–768, 1992.

3. M.Y. Chan and F. Chin, Schedulers for larger classes of pinwheel instances, Algo-
rithmica, 9(5):425–462, 1993.

4. H. Chuangpishit, J. Czyzowicz, L. Gasieniec, K. Georgiou, T. Jurdzinski, and
E. Kranakis, Patrolling a Path Connecting a Set of Points with Unbalanced Fre-
quencies of Visits, SOFSEM 2018: 367–380.

5. A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc,
R. Martin, and O. Morales Ponce, Optimal patrolling of fragmented boundaries.
SPAA 2013:241–250.

6. J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis, Boundary Patrolling
by Mobile Agents with Distinct Maximal Speeds, ESA 2011:701–712.

7. J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, and N. Taleb,
When Patrolmen Become Corrupted: Monitoring a Graph using Faulty Mobile
Robots, ISAAC 2015:343–354.

8. M. D’Emidio, G. Di Stefano, and A. Navarra, Priority Scheduling in the Bamboo
Garden Trimming Problem, SOFSEM 2019, to appear.

9. T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM Journal on Computing 24 (6) (1995) 1278–1304.

10. T. Eiter, G. Gottlob, K. Makino, New results on monotone dualization and gener-
ating hypergraph transversals, SIAM Journal on Computing 32 (2) (2003) 514–537.

11. L. Gasieniec, R. Klasing, Ch. Levcopoulos, A. Lingas, J. Min, and T. Radzik,
Bamboo Garden Trimming Problem (Perpetual Maintenance of Machines with
Different Attendance Urgency Factors), SOFSEM 2017:229–240.

12. M. Girvan and M.E.J. Newman, Community structure in social and biological
networks Proc. of the National Academy of Sciences, 2002, 99 (12):7821–7826.

13. M. Hagen, Algorithmic and computational complexity issues of MONET, Dr. rer.
nat., Friedrich-Schiller- Universit at Jena (2008).

14. R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel, Pinwheel scheduling with two
distinct numbers, Theoretical Computer Science, 100(1):105–135, 1992.

15. S.-S. Lin and K.-J. Lin, A Pinwheel Scheduler for Three Distinct Numbers with a
Tight Schedulability Bound, Algorithmica, 19(4): 411–426, 1997.

16. N. H. Mustafa, S. Ray, Improved Results on Geometric Hitting Set Problems.
Discrete & Computational Geometry 44(4): 883–895, 2010.

17. B. Nilsson, Guarding art galleries - methods for mobile guards. PhD thesis, De-
partment of Computer Science, Lund University, Sweden, 1995.

18. M.E.J. Newman and M. Girvan, Finding and evaluating community structure in
networks, Physical review E 69 (2), 026113, 2004.

19. S. Ntafos, On gallery watchmen in grids, Information Processing Letters, 23(2):99–
102, 1986.

20. T.H. Romer and L.E. Rosier, An algorithm reminiscent of euclidean-gcd for com-
puting a function related to pinwheel scheduling, Algorithmica, 17(1):1–10, 1997.

21. R. Raz and M. Safra, A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. of STOC, pages
475–484, 1997.

22. P. Serafini and W. Ukovich, A Mathematical Model for Periodic Scheduling Prob-
lems, SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

23. J. Urrutia, Art gallery and illumination problems, Handbook of computational
geometry, 1(1):973–1027, 2000.

Fair Hitting Sequence problem 13

Appendix: inefficiency of using one minimum hitting set

As discussed in Section 2.1, the schedule A(Wopt), which is based on a minimum
hitting set Wopt, is a (hmax/hmin)-approximate schedule (Lemma 1). How bad
can approximation ratios actually be, if we follow this approach? Here we show
an instance with hmax/hmin = Θ(m), where the approximation ratio of a solution
for the FHS problem based on the minimum hitting set is at least m

2 logm .

Consider an instance I of FHS consisting of m = 2` sets: Ci = {c, v′′i−1, v
′
i},

Pi = {v′i, v′′i }, i = 1, 2, . . . , `, with v′′0 ≡ v′′` (see Figure 2), and such that ` = 2k

and k divides `.8 By denoting h(Ci) and h(Pi) the growth rates of Ci and Pi,
respectively, we assume h(Ci) = 1 and h(Pi) = 1/`, i = 1, 2, . . . , `.

C`

v′i

v′′1

c

C1

C2

v′′`−1

. . .

. . .
v′′i−1

P` P1

P2P`−1

C3

Ci

Pi−1

Pi

v′3

v′′2

v′2

v′1

v′′`

v′`

P3

Fig. 2. An instance of the FHS problem.

The minimum hitting set HS for the instance I is given either by
{v′1, v′2, . . . , v′`} or {v′′1 , v′′2 , . . . , v′′` }, which are equivalent by symmetry. All ac-
cess nodes in HS being equivalent, for all schedules A(HS) (defined by the
permutations of HS), Height(A(HS)) = `.

Consider now the algorithm A+ that repeats the following scheduling:

(c, v′1, v
′
2, . . . , v

′
k, c, v

′
k+1, v

′
k+1, . . . , v

′
2k, , c, v

′
`−k+1, v

′
`−k+2, . . . , v

′
`).

Basically, scheduling A+ involves the access nodes of the hitting set
{v′1, v′2, . . . , v′`} plus the access point c not included in any hitting set. Then,
it alternates c with k different elements of the hitting set.

8 E.g., ` could be 22p and k = 2p, for any integer p.

14 S. Cicerone et al.

Let us denote by Height(A+, Ci) and Height(A+, Pi) the maximum heights
reached by sets Ci and Pi, respectively. Then:

Height(A+, Ci) = (k + 1) · h(Ci) = k + 1,

as c is accessed every k + 1 rounds,

Height(A+, Pi) =

(
`

k
+ `− 1

)
· h(Pi) =

(
`

k
+ `− 1

)
· 1

`
< 2,

as the number of slots between two visits to a generic Pi is given by the `−1
services to sets Pj , j 6= i, plus l

k accesses to c. This gives

Height(A+) = k + 1.

We can now calculate the ratio between Height(A(HS)) and Height(A+):

Height(A(HS))

Height(A+)
=

`

k + 1
=

`

log `+ 1
=

m/2

log(m/2) + 1
=

m

2 logm
.

As a consequence, it seems one should choose the access points of the schedule
taking into account their ‘popularity’, that is how many sets the same access
point serves. In the given instance I, in fact, the access point c was completely
ignored by HS.

By similar arguments,one can show an instance of FHS with sets composed
of just two elements each (so represented by a graph) where the solution based
on the minimum hitting set (i.e. the minimum vertex cover in this case) is not
helpful. One such instance of consists of m = 3` sets: Ci = {c, v′i}, P ′i = {v′i, v′′i },
P ′′i = {v′′i , v′i+1}, i = 1, 2, . . . , `, with v′l+1 ≡ v′1, where ` = 3k and k divides `.
Finally, h(Ci) = 1, h(P ′i) = 1/` and h(P ′′i) = 1/` i = 1, 2, . . . , `.

