393 research outputs found

    Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system

    Full text link
    We consider the spherically symmetric, asymptotically flat, non-vacuum Einstein equations, using as matter model a collisionless gas as described by the Vlasov equation. We find explicit conditions on the initial data which guarantee the formation of a trapped surface in the evolution which in particular implies that weak cosmic censorship holds for these data. We also analyze the evolution of solutions after a trapped surface has formed and we show that the event horizon is future complete. Furthermore we find that the apparent horizon and the event horizon do not coincide. This behavior is analogous to what is found in certain Vaidya spacetimes. The analysis is carried out in Eddington-Finkelstein coordinates.Comment: 2

    The formation of black holes in spherically symmetric gravitational collapse

    Full text link
    We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system. We find explicit conditions on the initial data, with ADM mass M, such that the resulting spacetime has the following properties: there is a family of radially outgoing null geodesics where the area radius r along each geodesic is bounded by 2M, the timelike lines r=c∈[0,2M]r=c\in [0,2M] are incomplete, and for r>2M the metric converges asymptotically to the Schwarzschild metric with mass M. The initial data that we construct guarantee the formation of a black hole in the evolution. We also give examples of such initial data with the additional property that the solutions exist for all r≄0r\geq 0 and all Schwarzschild time, i.e., we obtain global existence in Schwarzschild coordinates in situations where the initial data are not small. Some of our results are also established for the Einstein equations coupled to a general matter model characterized by conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild coordinates for data which are not small is added together with minor modification

    Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant

    Full text link
    The behaviour of expanding cosmological models with collisionless matter and a positive cosmological constant is analysed. It is shown that under the assumption of plane or hyperbolic symmetry the area radius goes to infinity, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the cosmic no hair theorem in this class of spacetimes

    Newtonian and General Relativistic Models of Spherical Shells - II

    Full text link
    A family of potential-density pairs that represent spherical shells with finite thickness is obtained from the superposition of spheres with finite radii. Other families of shells with infinite thickness with a central hole are obtained by inversion transformations of spheres and of the finite shells. We also present a family of double shells with finite thickness. All potential-density pairs are analytical and can be stated in terms of elementary functions. For the above-mentioned structures, we study the circular orbits of test particles and their stability with respect to radial perturbations. All examples presented are found to be stable. A particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian families of spheres and shells. The matter of these structures is anisotropic, and the degree of anisotropy is a function of the radius.Comment: 22 pages, 7 figures, accepted for publication in MNRA

    Bounds on the mass-to-radius ratio for non-compact field configurations

    Full text link
    It is well known that a spherically symmetric compact star whose energy density decreases monotonically possesses an upper bound on its mass-to-radius ratio, 2M/R≀8/92M/R\leq 8/9. However, field configurations typically will not be compact. Here we investigate non-compact static configurations whose matter fields have a slow global spatial decay, bounded by a power law behavior. These matter distributions have no sharp boundaries. We derive an upper bound on the fundamental ratio max_r{2m(r)/r} which is valid throughout the bulk. In its simplest form, the bound implies that in any region of spacetime in which the radial pressure increases, or alternatively decreases not faster than some power law r−(c+4)r^{-(c+4)}, one has 2m(r)/r≀(2+2c)/(3+2c)2m(r)/r \leq (2+2c)/(3+2c). [For c≀0c \leq 0 the bound degenerates to 2m(r)/r≀2/32m(r)/r \leq 2/3.] In its general version, the bound is expressed in terms of two physical parameters: the spatial decaying rate of the matter fields, and the highest occurring ratio of the trace of the pressure tensor to the local energy density.Comment: 4 page

    Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation

    Full text link
    We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.Comment: 21 page

    A molecule-based 1 : 2 digital demultiplexer

    Get PDF
    A trichromophoric molecule consisting of a porphyrin linked to both a dihydropyrene and a dihydroindolizine-type photochrome, in combination with a third harmonic generating crystal, functions as a 1:2 digital demultiplexer with photonic inputs and outputs. Each of the two photochromes may be cycled independently between two metastable forms, leading to four photoisomers, three of which are used in the demultiplexer. These isomers interact photochemically with the porphyrin in order to yield the demultiplexer function. With the address input (1064-nm light) turned off, one Output of the device (porphyrin fluorescence) tracks the state of the data input (532-nm light). When the address input is turned on, the second output (absorbance at 572 nm) tracks the state of the data input, while the first output remains off. The demultiplexer does not require chemical or electrical inputs, and can cycle through its operational sequences multiple times

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

    Full text link
    In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in Lℓ∞L^\infty_\ell. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of (Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves the open question of global existence for the soft potentials.Comment: 64 page
    • 

    corecore