1,237 research outputs found

    Silicon Nano-Particles with High Resistance to Harsh Ambient Conditions

    Get PDF
    Cataloged from PDF version of article.Silicon nanoparticles which have an average size of 1 nm are synthesized using electrochemical methods and their stability under high temperature and humidity conditions have been investigated. These types of Silicon nanoparticles exhibit strong blue emission (centered around 420 nm) upon excitation with ultraviolet illumination. Standard heating procedures showed that, these nanoparticles in a liquid suspension (de-ionized water) are stable to heating and they retain characteristic emissions even at elevated temperatures. Thin solid films of such Silicon nanocrystals also show good stability under plasma and oxidizing environments at high temperatures. © 2012 Springer Science+Business Media, LL

    Post-Treatment od Silicon Nanocrystals Produced by Ultra-Short Pulsed Laser Ablation in Liquid: Toward Blue Luminescent Nanocrystal Generation

    Get PDF
    Cataloged from PDF version of article.Blue luminescent colloidal silicon nanocrystals (Si-NCs) were produced in a two-stage process. In the first step, synthesis of Si-NCs was achieved by femtosecond pulsed laser ablation of a silicon wafer, which was immersed in deionized water. The size and the structural and the chemical characteristics of colloidal Si-NCs were investigated by TEM and EDAX analyses, and it is found out that the Si-NCs are in spherical shape and the particle diameters are in the range of 5-100 nm. In the second step, ultrasonic waves and filtering chemical-free post-treatment of colloidal Si-NCs solution was performed to reduce the particle size. High-resolution TEM (HRTEM) studies on post-treated colloidal solution clearly show that small (1-5.5 nm in diameter) Si-NCs were successfully produced. Raman spectroscopy results clearly confirms the generation of Si nanoparticles in the crystalline nature, and the Raman scattering study of post-treated Si-NCs confirms the reduction of the particle size. The UV-vis absorption and photoluminescence (PL) spectroscopy studies elucidate the quantum confinement effect of Si-NCs on the optical properties. The colloidal Si-NCs and post-treated Si-NCs solutions present strong absorption edge shifts toward UV region. Broadband PL emission behavior is observed for the initial colloidal Si-NCs, and the PL spectrum of post-treated Si-NCs presents a blue-shifted broadband PL emission behavior due to the particle size reduction effect. © 2012 American Chemical Societ

    Synthesis of ultra-small Si/Ge semiconductor nano-particles using electrochemistry

    Get PDF
    Cataloged from PDF version of article.In this paper, we describe the formation of colloidal Si/Ge semiconductor nano-particles by electrochemical etching of Ge quantum dots (GEDOT), SiliconeGermanium graded layers (GRADE) and SiliconeGermanium multi-quantum well (MQW) structures which are prepared on Silicon wafers using low pressure chemical vapor deposition (LPCVD) technique. The formation of Si/Ge nano-particles is verified by transmission electron microscope (TEM) images and photoluminescence (PL) measurements. The Si/Ge nano-particles obtained from GEDOT and GRADE structures, gave blue emissions, upon 250 nm, and 300 nm UV excitations. However, the nano-particles obtained from the MQW structure did exhibit various color emissions (orange, blue, green and red) upon excitation with 250 nm, 360 nm, 380 nm and 400 nm wavelength light. (C) 2012 Elsevier B.V. All rights reserve

    Enhanced memory effect with embedded graphene nanoplatelets in znO charge trapping layer

    Get PDF
    Cataloged from PDF version of article.A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage Vt shift (4 V) at low operating voltage (6/-6 V), good retention (>10 yr), and good endurance characteristic (>104 cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced Vt shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger Vt shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E ¥ 5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications. © 2014 AIP Publishing LLC

    Thin film MoS2 nanocrystal based ultraviolet photodetector

    Get PDF
    Cataloged from PDF version of article.We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2-NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS2-NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2-NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics. (C) 2012 Optical Society of Americ

    A Near-Infrared Range Photodetector Based on Indium Nitride Nanocrystals Obtained Through Laser Ablation

    Get PDF
    Cataloged from PDF version of article.We present a proof-of-concept photodetector that is sensitive in the near-infrared (NIR) range based on InN nanocrystals. Indium nitride nanocrystals (InN-NCs) are obtained through laser ablation of a high pressure chemical vapor deposition grown indium nitride thin film and are used as optically active absorption region. InN-NCs are sandwiched between thin insulating films to reduce the electrical leakage current. Under -1 V applied bias, the recorded photoresponsivity values within 600-1100-nm wavelength range are as high as 3.05 x 10(-2) mA/W. An ultrathin layer of nanocrystalline InN thin film is, therefore, a promising candidate for NIR detection in large area schemes. © 2014 IEEE

    Silicon nanoparticle charge trapping memory cell

    Get PDF
    Cataloged from PDF version of article.A charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (V-t) shift of 2.9 V at a negative programming voltage of -10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured V-t shift without the nanoparticles and the good retention of charges (> 10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the V-t shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon-assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm 2.1 MV/cm).(C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

    Get PDF
    Cataloged from PDF version of article.We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9-25.3, 5.45-34.8, 3.24-36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region. © 2012 Springer Science+Business Media B.V

    A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation

    Get PDF
    Cataloged from PDF version of article.We present a proof-of-concept photodetector which is sensitive in the visible spectrum. Silicon nanocrystals (Si-NCs) obtained by laser ablation are used as the active absorption region. Si-NC films are formed from a polymeric dispersion. The films are sandwiched between thin insulating films to reduce the electrical leakage current. Furthermore, Ag nanoparticles are integrated with the photodetector to enhance the visible response using plasmonic effects. The measured photocurrent is resonantly enhanced, which is explained in terms of enhanced local fields caused by localized plasmons. The UV-vis spectrum of Ag nanoparticles is also measured to verify the resonance. © 2012 IOP Publishing Ltd

    Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer

    Get PDF
    Cataloged from PDF version of article.In this work, the fabrication of charge trapping memory cells with laser-synthesized indium-nitride nanoparticles (InN-NPs) embedded in ZnO charge trapping layer is demonstrated. Atomic layer deposited Al2O3 layers are used as tunnel and blocking oxides. The gate contacts are sputtered using a shadow mask which eliminates the need for any lithography steps. High frequency C-Vgate measurements show that a memory effect is observed, due to the charging of the InN-NPs. With a low operating voltage of 4 V, the memory shows a noticeable threshold voltage (Vt) shift of 2 V, which indicates that InN-NPs act as charge trapping centers. Without InN-NPs, the observed memory hysteresis is negligible. At higher programming voltages of 10 V, a memory window of 5 V is achieved and the Vt shift direction indicates that electrons tunnel from channel to charge storage layer. © 2014 AIP Publishing LL
    corecore