866 research outputs found
Light sensitive digital aspect sensor Patent
Light sensitive digital aspect sensor for attitude control of earth satellites or space probe
The Marr and Albus Theories of the Cerebellum: Two Eary Models of Associative Memory
The Marr and Albus theories of the cerebellum are compared and contrasted. They are shown to be similar in their analysis of the function of the mossy fibers, granule cells, Golgi cells, and Purkinje cells. They both predict motor learning in the parallel fiber synapses on the Purkinje dendrites mediated by concurrent climbing fiber input. This prediction has been confirmed by experimental evidence. In contrast, Marr predicts these synapses would be facilitated by learning, while Albus predicts they would be weakened. Experimental evidence confirms synaptic weakening
Hierarchical control of intelligent machines applied to space station telerobots
A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task decomposition hierarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repeated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored in the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarchy and how it can be applied to space telerobot applications are discussed
NASREN: Standard reference model for telerobot control
A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications
NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)
The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control
The NIST Real-Time Control System (RCS): A Reference Model Architecture for Computational Intelligence
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level
A Digital Solar Aspect Sensor
The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles
Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation
We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures,
derive the associated Kohn-Sham equations, and determine the
exchange-correlation energy in local density approximation. We solve
numerically the Kohn-Sham system and determine the boson and fermion density
distributions and the ground-state energy of a trapped, dilute mixture beyond
mean-field approximation. The importance of the corrections due to
exchange--correlation is discussed by comparison with current experiments; in
particular, we investigate the effect of of the repulsive potential energy
contribution due to exchange--correlation on the stability of the mixture
against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review
Thermodynamics of a Trapped Bose-Fermi Mixture
By using the Hartree-Fock-Bogoliubov equations within the Popov
approximation, we investigate the thermodynamic properties of a dilute binary
Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an
attractive Bose-Fermi interaction we find a sizable enhancement of the
condensate fraction and of the critical temperature of Bose-Einstein
condensation with respect to the predictions for a pure interacting Bose gas.
Conversely, the influence of the repulsive Bose-Fermi interaction is less
pronounced. The possible relevance of our results in current experiments on
trapped {\rm K} mixtures is discussed.Comment: 5 pages + 4 figures; minor changes, final version to appear in Phys.
Rev. A; the extension work on the finite-temperature low-lying excitations
can be found in cond-mat/030763
Validity of a multidimensional comprehensive psychosocial screening instrument based on the ESC cardiovascular prevention guidelines:Evidence from the general and cardiovascular patient population
Aim To evaluate the psychometric properties and validity of the updated version of the Dutch multidimensional Comprehensive Psychosocial Screening Instrument in patients with coronary heart disease and the general population, based upon guideline recommendations from the European Society for Cardiology. Method 678 participants (Mage = 48.2, SD = 16.8; 46% male) of the Dutch general population and 312 cardiac patients (Mage = 65.9, SD = 9.9; 77% male) who recently received percutaneous coronary intervention completed the Comprehensive Psychosocial Screening Instrument and validated questionnaires for depression (PHQ-9), anxiety (GAD-7), Type D personality (DS14), hostility (CMHS), anger (STAS-T), trauma (SRIP), and chronic work and family stress (ERI, MMQ-6). Results Confirmatory factor analysis (CFA) confirmed that the eight screened risk factors were best measured as separate entities, rather than broader indications of distress. Inter-instrument agreement, assessed with the intraclass coefficient (ICC) and the screening accuracy indicators (receiving operator characteristic [ROC] curves, sensitivity, specificity, and the positive and negative predictive values [PPV; NPV]) were good for most screened risk factors. PPV was low in low prevalence risk factors like anxiety, trauma, and depression. Conclusion Overall, the current version of the Comprehensive Psychosocial Screening Instrument has an acceptable performance in both populations, with a fair to excellent level of agreement with established full questionnaires. Besides a few suggestions for further refinement, the screener may be implemented in primary care and cardiological practice
- …