14 research outputs found

    Complement is activated in progressive multiple sclerosis cortical grey matter lesions

    Get PDF
    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression

    High interleukin-6 and impulsivity : determining the role of endophenotypes in attempted suicide

    No full text
    The dysregulation of inflammation has been associated with depression and, more recently, with suicidal behaviors. The reports regarding the relationship between interleukin-6 (IL-6) and suicide attempts are inconsistent. Personality traits such as impulsivity and aggression are considered endophenotypes and important factors that underlie suicidal behaviors. The aim of the current study was to assess whether plasma and cerebrospinal fluid (CSF) levels of IL-6 are associated with personality traits among suicide attempters. We assessed the relationships among personality traits, IL-6 and violent suicide attempts. The plasma and CSF levels of IL-6 were measured in suicide attempters (plasma=58, CSF=39) using antibody-based immunoassay systems. Personality domains were assessed using the Karolinska Scale of Personality (KSP). IL-6 levels in plasma and CSF were used to predict personality domains via regression models. Plasma IL-6 was significantly and positively correlated with extraversion as well as the KSP subscales impulsivity and monotony avoidance. CSF IL-6 was positively correlated with monotony avoidance. Violent suicide attempts tended to be associated with high plasma IL-6 levels. Plasma and CSF levels of IL-6 were not significantly associated with each other. These results indicate that impulsivity and the choice of a violent suicide attempt method might be related to higher levels of IL-6 in individuals who attempt suicide. The neuroinflammation hypothesis of suicidal behavior on the basis of elevated IL-6 levels might be partly explained by the positive association between IL-6 and impulsivity, which is a key element of the suicidal phenotype

    U.S. Authority for Military Operations under Regional Organization Sponsorship

    No full text
    Moderator: Alex Roland, Professor and Acting Chair, Department of History, Duke University Panelists: William W. Van Alstyne, William R. Perkins and Thomas C. Perkins Professor of Law, Duke University School of Law Robert F. Turner, Associate Director, Center for National Security Law Dr. Louis Fisher, Senior Specialist, Library of Congress, Congressional Research Servic

    Unbiased expression mapping identifies a link between the complement and cholinergic systems in the rat central nervous system

    Get PDF
    The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA x PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-{alpha} pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-{alpha} stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation
    corecore