113,562 research outputs found
Nepali Domestic Workers in New Delhi: Strategies and Agency
Scholars have noted deplorable conditions of female migrant workers who suffer several types of citizenship disabilities as most countries do not extend equal citizenship rights and protections to migrant workers. In addition to this, they are unable to take full advantage of the rights available to them in the host countries because of low cultural and social capital. Further, studies have emphasized how the breakdown of the traditional economy and the penetration of the market in developing societies have forced people, especially from rural areas, to seek low-paying dead-end jobs in the global labor market. Examining Nepali domestic workers in New Delhi, while this research agrees with the existing studies, we also bring to notice the fact that migrant female workers are not always passive victims and that they exercise considerable choice and agency. The case of Nepali domestic workers in New Delhi offers fresh insight into the ways in which migrant women attempt to actively influence and control the work conditions and immediate labour market outcomes. This paper also shows that even if Nepali migrant workers gain in a limited way, they actively collude with their employers to marginalize native domestic workers. In the end, traditional power relations and inequality are reproduced unchallenged
Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL
One of the most promising approaches to fighting the configuration space explosion problem in lifted model checking are variability abstractions. In this work, we define a novel game-based approach for variability-specific abstraction and refinement for lifted model checking of the full CTL, interpreted over 3-valued semantics. We propose a direct algorithm for solving a 3-valued (abstract) lifted model checking game. In case the result of model checking an abstract variability model is indefinite, we suggest a new notion of refinement, which eliminates indefinite results. This provides an iterative incremental variability-specific abstraction and refinement framework, where refinement is applied only where indefinite results exist and definite results from previous iterations are reused. The practicality of this approach is demonstrated on several variability models
Generating feasible transition paths for testing from an extended finite state machine (EFSM)
The problem of testing from an extended finite state machine (EFSM) can be expressed in terms of finding suitable paths through the EFSM and then deriving test data to follow the paths. A chosen path may be infeasible and so it is desirable to have methods that can direct the search for appropriate paths through the EFSM towards those that are likely to be feasible. However, generating feasible transition paths (FTPs) for model based testing is a challenging task and is an open research problem. This paper introduces a novel fitness metric that analyzes data flow dependence among the actions and conditions of the transitions in order to estimate the feasibility of a transition path. The proposed fitness metric is evaluated by being used in a genetic algorithm to guide the search for FTPs
A search-based technique for testing from extended finite state machine model
Extended finite state machines (EFSMs), and languages such as state-charts that are similar to EFSMs, are widely used to model state-based systems. When testing from an EFSM M it is common to aim to produce a set of test sequences (input sequences) that satisfies a test criterion that relates to the transition paths (TPs) of M that are executed by the test sequences. For example, we might require that the set of TPs triggered includes all of the transitions of M. One approach to generating such a set of test sequences is to split the problem into two stages: choosing a set of TPs that achieves the test criterion and then producing test sequences to trigger these TPs. However, the EFSM may contain infeasible TPs and the problem of generating a test sequence to trigger a given feasible TP (FTP) is generally uncomputable. In this paper we present a search-based approach that uses two techniques: (1) A TP fitness metric based on our previous work that estimates the feasibility of a given transition path; and (2) A fitness function to guide the search for a test sequence to trigger a given FTP. We evaluated our approach on five EFSMs: A simple in-flight safety system; a class II transport protocol; a lift system; an ATM; and the Inres initiator. In the experiments the proposed approach successfully tested approximately 96.75 % of the transitions and the proposed test sequence generation technique triggered all of the generated FTPs
Automatic generation of test sequences form EFSM models using evolutionary algorithms
Automated test data generation through evolutionary testing (ET) is a topic of interest to the software engineering community. While there are many ET-based techniques for automatically generating test data from code, the problem of generating test data from an extended finite state machine (EFSMs) is more complex and has received little attention. In this paper, we introduce a novel approach that addresses the problem of generating input test sequences that trigger given feasible paths in an EFSM model by employing an ET-based technique. The proposed approach expresses the problem as a search for input parameters to be applied to a set of functions to be called sequentially. In order to apply ET-based technique, a new fitness function is introduced to cope with the case when a test target involves calls to a set of transitions sequentially. We evaluate our approach empirically using five sets of randomly generated paths through two EFSM case studies: INRES and class 2 transport protocols. In the experiments, we apply two search techniques: a random and an ET-based which utilizes our new fitness function. Experimental results show that the proposed approach produces input test sequences that trigger all the feasible paths used with a success rate of 100%, however, the random technique failed in most cases with a success rate of 20.8%
A testability transformation approach for state-based programs
Search based testing approaches are efficient in test data generation; however they are likely to perform poorly when applied to programs with state variables. The problem arises when the target function includes guards that reference some of the program state variables whose values depend on previous function calls. Thus, merely considering the target function to derive test data is not sufficient. This paper introduces a testability transformation approach based on the
analysis of control and data flow dependencies to
bypass the state variable problem. It achieves this by eliminating state variables from guards and/ or determining which functions to call in order to satisfy guards with state variables. A number of experiments demonstrate the value of the proposed approach
A search-based approach for automatic test generation from extended finite state machine (EFSM)
The extended finite state machine is a powerful model that can capture almost all the aspects of a system. However, testing from an EFSM is yet a challenging task due to two main problems: path feasibility and path test data generation. Although optimization algorithms are efficient, their applications to EFSM testing have received very little attention. The aim of this paper is to develop a novel approach that utilizes optimization algorithms to test from EFSM models
A Lowpass Filter with Sharp Roll - off and High Relative Stopband Bandwidth Using Asymmetric High - Low Impedance Patches
In this letter, a microstrip lowpass filter with -3 dB cut-off frequency at 1.286 GHz is proposed. By using two main resonators which are placed symmetrically around Y axis a sharp roll-off rate (250 dB/GHz) is obtained. The proposed resonators are consisted of two asymmetric high-low impedance patches. To achieve a high relative stopband bandwidth (1.82) four high - low impedance resonators and four radial stubs as suppressing cells are employed. Furthermore, a flat insertion loss in the passband and a low return loss in the stopband can prove desired in-band and out-band frequency response. The proposed LPF has a high FOM about 63483
- …