84,446 research outputs found
Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory
The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined
field statistics that vary with pulsar phase, ranging from Gaussian intensity
statistics off-pulse to approximately power-law statistics in a transition
region and then lognormal statistics on-pulse, excluding giant micropulses.
These data are analyzed here in terms of two superposed wave populations, using
a new calculation for the amplitude statistics of two vectorially-combined
transverse fields. Detailed analyses show that the approximately power-law and
lognormal distributions observed are fitted well at essentially all on-pulse
phases by Gaussian-lognormal and double-lognormal combinations, respectively.
These good fits, plus the smooth but significant variations in fit parameters
across the source, provide strong evidence that the approximately power-law
statistics observed in the transition region are not intrinsic. Instead, the
data are consistent with normal pulsar emission having lognormal statistics at
all phases. This is consistent with generation in an inhomogeneous source
obeying stochastic growth theory (SGT) and with the emission mechanism being
purely linear (either direct or indirect). A nonlinear mechanism is viable only
if it produces lognormal statistics when suitably ensemble-averaged. Variations
in the SGT fit parameters with phase imply that the radiation is relatively
more variable near the pulse edges than near the center, as found in earlier
work. In contrast, Vela's giant micropulses come from a very restricted phase
range and have power-law statistics with indices () not
inconsistent with nonlinear wave collapse. These results imply that normal
pulses have a different source and generation mechanism than giant micropulses,
as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal
Astronomical Society in April 200
Full major-shell calculation for states that were degenerate in a single-j-shell calculation
A full fp calculation is performed for states which were degenerate in a
single-j-shell calculation in which isospin-zero two-body matrix elements were
set to zero energy. Most of the splitting in a complete shell calculation (but
not all) comes from the T=0 part of the interaction.Comment: 5 pages, RevTeX4. Submitted to Physical Review
Some exact solutions with torsion in 5-D Einstein-Gauss-Bonnet gravity
Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived.
These solutions have a cross product structure of two constant curvature
manifolds. The equations of motion give a relation for the coupling constants
of the theory in order to have solutions with nontrivial torsion. This relation
is not the Chern-Simons combination. One of the solutions has a structure and is so the purely gravitational analogue of the
Bertotti-Robinson space-time where the torsion can be seen as the dual of the
covariantly constant electromagnetic field.Comment: 19 pages, LaTex, no figures. References added, notation clarified.
Accepted for publication on Physical Review
On the structure of subsets of an orderable group with some small doubling properties
The aim of this paper is to present a complete description of the structure
of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is
non-abelian
HST imaging of hyperluminous infrared galaxies
We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared
Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have
morphologies showing evidence for interactions, six are QSOs. Host galaxies in
the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies
have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88
and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no
clear correlation between the IR power source and the optical morphology. None
of the sources in the sample, including F15307+3252, show any evidence for
gravitational lensing. We infer that the IR luminosities are thus real. Based
on these results, and previous studies of HLIRGs, we conclude that this class
of object is broadly consistent with being a simple extrapolation of the ULIRG
population to higher luminosities; ULIRGs being mainly violently interacting
systems powered by starbursts and/or AGN. Only a small number of sources whose
infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous
objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
Graviton-Graviton Scattering, Bel-Robinson and Energy (Pseudo)-Tensors
Motivated by recent work involving the graviton-graviton tree scattering
amplitude, and its twin descriptions as the square of the Bel-Robinson tensor,
B_{\m\n\a\b}, and as the "current-current interaction" square of
gravitational energy pseudo-tensors t_{\a\b},we find an exact tensor-square
root equality B_{\mn\a\b} = \pa^2_\mn t_{\a\b}, for a combination of Einstein
and Landau-Lifschitz t_\ab, in Riemann normal coordinates. In the process, we
relate, on-shell, the usual superpotential basis for classifying pseudo-tensors
with one spanned by polynomials in the curvature.Comment: 7 page
Unified Viscoplastic Behavior of Metal Matrix Composites
The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated
The Luminous Convolution Model as an alternative to dark matter in spiral galaxies
The Luminous Convolution Model (LCM) demonstrates that it is possible to
predict the rotation curves of spiral galaxies directly from estimates of the
luminous matter. We consider two frame-dependent effects on the light observed
from other galaxies: relative velocity and relative curvature. With one free
parameter, we predict the rotation curves of twenty-three (23) galaxies
represented in forty-two (42) data sets. Relative curvature effects rely upon
knowledge of both the gravitational potential from luminous mass of the
emitting galaxy and the receiving galaxy, and so each emitter galaxy is
compared to four (4) different Milky Way luminous mass models. On average in
this sample, the LCM is more successful than either dark matter or modified
gravity models in fitting the observed rotation curve data.
Implications of LCM constraints on populations synthesis modeling are
discussed in this paper. This paper substantially expands the results in
arXiv:1309.7370.Comment: Implications of LCM constraints on populations synthesis modeling are
discussed in this paper. This paper substantially expands the results in
arxiv:1309.737
- …
