2,832 research outputs found
Microstructure Effects on Daily Return Volatility in Financial Markets
We simulate a series of daily returns from intraday price movements initiated
by microstructure elements. Significant evidence is found that daily returns
and daily return volatility exhibit first order autocorrelation, but trading
volume and daily return volatility are not correlated, while intraday
volatility is. We also consider GARCH effects in daily return series and show
that estimates using daily returns are biased from the influence of the level
of prices. Using daily price changes instead, we find evidence of a significant
GARCH component. These results suggest that microstructure elements have a
considerable influence on the return generating process.Comment: 15 pages, as presented at the Complexity Workshop in Aix-en-Provenc
First Passage Properties of the Erdos-Renyi Random Graph
We study the mean time for a random walk to traverse between two arbitrary
sites of the Erdos-Renyi random graph. We develop an effective medium
approximation that predicts that the mean first-passage time between pairs of
nodes, as well as all moments of this first-passage time, are insensitive to
the fraction p of occupied links. This prediction qualitatively agrees with
numerical simulations away from the percolation threshold. Near the percolation
threshold, the statistically meaningful quantity is the mean transit rate,
namely, the inverse of the first-passage time. This rate varies
non-monotonically with p near the percolation transition. Much of this behavior
can be understood by simple heuristic arguments.Comment: 10 pages, 9 figures, 2-column revtex4 forma
Embedded Stellar Clusters in the W3/W4/W5 Molecular Cloud Complex
We analyze the embedded stellar content in the vicinity of the W3/W4/W5 HII
regions using the FCRAO Outer Galaxy 12CO(J=1-0) Survey, the IRAS Point Source
Catalog, published radio continuum surveys, and new near-infrared and molecular
line observations. Thirty-four IRAS Point Sources are identified that have
far-infrared colors characteristic of embedded star forming regions, and we
have obtained K' mosaics and 13CO(J=1-0) maps for 32 of them. Ten of the IRAS
sources are associated with an OB star and 19 with a stellar cluster, although
three OB stars are not identified with a cluster. Half of the embedded stellar
population identified in the K' images is found in just the 5 richest clusters,
and 61% is contained in IRAS sources associated with an embedded OB star. Thus
rich clusters around OB stars contribute substantially to the stellar
population currently forming in the W3/W4/W5 region. Approximately 39% of the
cluster population is embedded in small clouds with an average mass of ~130 Mo
that are located as far as 100 pc from the W3/W4/W5 cloud complex. We speculate
that these small clouds are fragments of a cloud complex dispersed by previous
episodes of massive star formation. Finally, we find that 4 of the 5 known
embedded massive star forming sites in the W3 molecular cloud are found along
the interface with the W4 HII region despite the fact that most of the
molecular mass is contained in the interior regions of the cloud. These
observations are consistent with the classical notion that the W4 HII region
has triggered massive star formation along the eastern edge of the W3 molecular
cloud.Comment: to appear in ApJS, see http://astro.caltech.edu/~jmc/papers/w
A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high
signal-to-noise ratios toward distinct positions in three selected objects in
order to search for small-scale structure in molecular cloud cores associated
with regions of high-mass star formation. In some cases, ripples were detected
in the line profiles, which could be due to the presence of a large number of
unresolved small clumps in the telescope beam. The number of clumps for regions
with linear scales of ~0.2-0.5 pc is determined using an analytical model and
detailed calculations for a clumpy cloud model; this number varies in the
range: ~2 10^4-3 10^5, depending on the source. The clump densities range from
~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps
are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump
gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal
energy of the gas in the model clumps is much higher than their gravitational
energy. Their mean lifetimes can depend on the inter-clump collisional rates,
and vary in the range ~10^4-10^5 yr. These structures are probably connected
with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table
Water Abundance in Molecular Cloud Cores
We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the
1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud
cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL
2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and
B335. We also present a small map of the water emission in S140. Observations
of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission
was detected. The abundance of ortho-water relative to H_2 in the giant
molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five
of the cloud cores in our sample have previous water detections; however, in
all cases the emission is thought to arise from hot cores with small angular
extents. The water abundance estimated for the hot core gas is at least 100
times larger than in the gas probed by SWAS. The most stringent upper limit on
the ortho-water abundance in dark clouds is provided in TMC-1, where the
3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
Classification of crystallization outcomes using deep convolutional neural networks
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications
Human Resources and the Resource Based View of the Firm
The resource-based view (RBV) of the firm has influenced the field of strategic human resource management (SHRM) in a number of ways. This paper explores the impact of the RBV on the theoretical and empirical development of SHRM. It explores how the fields of strategy and SHRM are beginning to converge around a number of issues, and proposes a number of implications of this convergence
Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187
Three Galactic star forming regions associated with W3(OH), S209 and S187
have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands
centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR
telescope. These maps show extended FIR emission with structures. The HIRES
processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been
presented for comparison. Point-like sources have been extracted from the
longest waveband TIFR maps and searched for associations in the other five
bands. The diffuse emission from these regions have been quantified, which
turns out to be a significant fraction of the total emission. The spatial
distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209),
has been determined reliably from the maps in TIFR bands. The dust temperature
and optical depth maps show complex morphology. In general the dust around S209
has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20
pages including 8 figures & 3 tables
Velocity-resolved [CII] emission and [CII]/FIR Mapping along Orion with Herschel
We present the first 7.5'x11.5' velocity-resolved map of the [CII]158um line
toward the Orion molecular cloud-1 (OMC-1) taken with the Herschel/HIFI
instrument. In combination with far-infrared (FIR) photometric images and
velocity-resolved maps of the H41alpha hydrogen recombination and CO J=2-1
lines, this data set provides an unprecedented view of the intricate
small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the
radiative feedback from massive stars. The main contribution to the [CII]
luminosity (~85%) is from the extended, FUV-illuminated face of the cloud
G_0>500, n_H>5x10^3 cm^-3) and from dense PDRs (G_0~10^4, n_H~10^5 cm^-3) at
the interface between OMC-1 and the HII region surrounding the Trapezium
cluster. Around 15% of the [CII] emission arises from a different gas component
without CO counterpart. The [CII] excitation, PDR gas turbulence, line opacity
(from [13CII]) and role of the geometry of the illuminating stars with respect
to the cloud are investigated. We construct maps of the [CII]/FIR and FIR/M_Gas
ratios and show that [CII]/FIR decreases from the extended cloud component
(10^-2-10^-3) to the more opaque star-forming cores (10^-3-10^-4). The lowest
values are reminiscent of the "[CII] deficit" seen in local ultra-luminous IR
galaxies hosting vigorous star formation. Spatial correlation analysis shows
that the decreasing [CII]/FIR ratio correlates better with the column density
of dust through the molecular cloud than with FIR/M_Gas. We conclude that the
[CII] emitting column relative to the total dust column along each line of
sight is responsible for the observed [CII]/FIR variations through the cloud.Comment: 21 pages, 17 figures. Accepted for publication in the Astrophysical
Journal (2015 August 12). Figures 2, 6 and 7 are bitmapped to lower
resolution. This is version 2 after minor editorial changes. Notes added
after proofs include
An Ultra-High-Resolution Survey of the Interstellar ^7Li-to-^6Li Isotope Ratio in the Solar Neighborhood
In an effort to probe the extent of variations in the interstellar ^7Li/^6Li
ratio seen previously, ultra-high-resolution (R ~ 360,000), high
signal-to-noise spectra of stars in the Perseus OB2 and Scorpius OB2
Associations were obtained. These measurements confirm our earlier findings of
an interstellar ^7Li/^6Li ratio of about 2 toward o Per, the value predicted
from models of Galactic cosmic ray spallation reactions. Observations of other
nearby stars yield limits consistent with the isotopic ratio ~ 12 seen in
carbonaceous chondrite meteorites. If this ratio originally represented the gas
toward o Per, then to decrease the original isotope ratio to its current value
an order of magnitude increase in the Li abundance is expected, but is not
seen. The elemental K/Li ratio is not unusual, although Li and K are formed via
different nucleosynthetic pathways. Several proposals to account for the low
^7Li/^6Li ratio were considered, but none seems satisfactory.
Analysis of the Li and K abundances from our survey highlighted two sight
lines where depletion effects are prevalent. There is evidence for enhanced
depletion toward X Per, since both abundances are lower by a factor of 4 when
compared to other sight lines. Moreover, a smaller Li/H abundance is observed
toward 20 Aql, but the K/H abundance is normal, suggesting enhanced Li
depletion (relative to K) in this direction. Our results suggest that the
^7Li/^6Li ratio has not changed significantly during the last 4.5 billion years
and that a ratio ~ 12 represents most gas in the solar neighborhood. In
addition, there appears to be a constant stellar contribution of ^7Li,
indicating that one or two processes dominate its production in the Galaxy.Comment: 54 pages, accepted for publication in the Astrophysical Journa
- …
