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Abstract

Tumor hypoxia is associated clinically with therapeutic resis-
tance and poor patient outcomes. One feature of tumor hypoxia is
activated expressionof carbonic anhydrase IX (CA9), a regulator of
pH and tumor growth. In this study, we investigated the hypoth-
esis that impeding the reuptake of bicarbonate produced extra-
cellularly by CA9 could exacerbate the intracellular acidity pro-
duced by hypoxic conditions, perhaps compromising cell growth
and viability as a result. In 8 of 10 cancer cell lines, we found that
hypoxia induced the expression of at least one bicarbonate trans-
porter. The most robust and frequent inductions were of the
sodium-driven bicarbonate transporters SLC4A4 and SLC4A9,
which rely upon both HIF1a and HIF2a activity for their expres-

sion. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by
either genetic or pharmaceutical approaches acidified intracellular
pH and reduced cell growth. Furthermore, treatment of spheroids
with S0859, a small-molecule inhibitor of sodium-driven bicar-
bonate transporters, increased apoptosis in the cell lines tested.
Finally, RNAi-mediated attenuation of SLC4A9 increased apopto-
sis in MDA-MB-231 breast cancer spheroids and dramatically
reduced growth of MDA-MB-231 breast tumors or U87 gliomas
in murine xenografts. Our findings suggest that disrupting pH
homeostasis by blocking bicarbonate import might broadly
relieve the common resistance of hypoxic tumors to anticancer
therapy. Cancer Res; 76(13); 3744–55. �2016 AACR.

Introduction
Hypoxia (low oxygen) and acidosis are key physiologica fea-

tures commonly associated with solid tumors. Hypoxia results
from high metabolic demand and proliferative rates, combined
with poor tumor perfusion. These factors increase oxygen require-
ments while reducing oxygen availability (1). Clinically, hypoxia
is associated with poor patient prognosis and resistance to che-
motherapy and radiotherapy (2). Developing new strategies to
target the hypoxic microenvironment is critical for improving

patient outcome. Furthermore, antiangiogenic therapy induces
tumor hypoxia in approximately half of cases (where the remain-
der of the tumors exhibit no vascular response or vascular nor-
malization for a period at the start of therapy), and combination
strategies that induce apoptosis in the hypoxicmicroenvironment
would be effective in this context (3). Hypoxia results in stabi-
lization of the transcription factors hypoxia inducible factors
(HIF) 1a and 2a, via reduced hydroxylation of HIF proteins,
preventing ubiquitination pVHL (protein Von Hippel–Lindau),
which precedes HIF proteasomal degradation (4). Many HIF-
regulated genes trigger more aggressive tumor growth, invasion,
metabolic adaptation, and survival (3).

The extracellular microenvironment of hypoxic tumors is
acidic (5) because of increased production of metabolic acids
(CO2 and lactic acid) and longer diffusion distances to the
nearest functional blood capillary for acid venting. A mismatch
between acid production and venting can profoundly change
steady-state intra- and extracellular pH, which could have major
effects on cell survival because Hþ ions are highly reactive and
target essentially all protein-dependent processes (6). This is
exacerbated by the fact that the optimal range of intracellular
pH (pHi) is very narrow. In most cells, a mildly alkaline pHi

supports growth and function, and this condition is normally
maintained by transporter proteins at the cell membrane that
handle Hþ ions or their chemical equivalents (e.g., HCO3

� or
OH�). This homeostatic mechanism is challenged by the low
extracellular pH (pHe) of tumors because extracellular acidity
can reduce acid–extrusion flux allosterically (7) and thermody-
namically (i.e., pumping against a steeper [Hþ] gradient). The
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pHi-regulatory apparatus in cancer cells must therefore main-
tain a transmembrane pH gradient through active transport of
adequate flux magnitude (6). The characteristic distribution of
Hþ ions across tumor aqueous compartments is dually favor-
able for cancer progression. While the mildly alkaline pHi

supports proliferation and reduces sensitivity to apoptosis, the
more acidic pHe favors increased extracellular matrix degrada-
tion, facilitating invasion and metastasis (8, 9).

HIF1a-regulated CA9 (10) facilitates CO2 venting from diffu-
sion-limited tissue by augmenting its extracellular diffusion as its
hydrationproducts (Hþ andHCO3

�; ref. 11). In spheroidmodels,
we have demonstrated that this CA9-driven mechanism regulates
the intracellular and extracellular pH (12). Clinically, CA9 is a
marker for poor clinical outcome in most cancer types (13–16)
and recent work has identified the importance of CA9 in tumor
growth, metastasis, and response to antiangiogenic therapy
(17–19). However, in order for CA9 to operate in the direction
of net hydration, cells must release CO2 (20). Under hypoxic
conditions, this requires cellular uptake of bicarbonate, which can
be sourced from the extracellular CA9 reaction. The bicarbonate
uptake process represents the active transport mechanism that
drives uphill acid efflux, and is therefore essential for pH homeo-
stasis, an inherently energy-demanding process.

Bicarbonate transporters are grouped into the SLC4 and SLC26
protein families (21–23). These can be subdivided into two
classes. The Naþ-independent anion exchangers include SLC4A
1-3 and SLC26A 2-4, 7, 9, and 11, and many of these proteins are
nominally acid loaders. The second major class is the Naþ-driven
bicarbonate transporters (NDBT), including Naþ-HCO3

� cotran-
sporters (NBC) SLC4A4 (electrogenic NBCe1), SLC4A5 (electro-
genic NBCe2), SLC4A7 (electroneutral NBCn1), and SLC4A10
(NBCn2), and the Naþ-driven anion exchangers SLC4A8 (Naþ-
driven Cl�/HCO3

� exchange) and, putatively, SLC4A9 (AE4;
refs. 21, 24). SLC4A4 and 7 are well-characterized acid extruders.
SLC4A9 has been controversial, with differing reports of its
functional role, possibly because of the use of the SLC4A9 gene
from different species in heterologous expression systems (21).
Amino acid sequence analysis showed that SLC4A9 has substan-
tial similarity with the NBCs (21). Functional studies of human
SLC4A9 showed it produced a Naþ-driven pHi recovery from a
CO2-induced acidosis (24).

In several cancer cell lines, we showed a shift in pH regu-
lation toward bicarbonate-dependent transport occurs in hyp-
oxia (25). The importance of pH regulation for survival in the
hypoxic tumor microenvironment presents an opportunity to
induce synthetic lethality by disrupting acid/base balance.
Hypoxia has been shown to increase SLC4A4 expression in
the Ls174T colon cancer cell line (26). That study also dem-
onstrated that knockdown of SLC4A4 slowed the recovery of
intracellular pH from an intracellular acid load, reduced two-
dimensional (2D) growth, increased cell mortality in acidic
conditions, and reduced spheroid growth (26). Intriguingly,
increased levels of bicarbonate transporters have been reported
in several types of tumors (27, 28).

Here, we investigated the expression of all major bicarbonate
transporters of the SLC4 and SLC26 families in response to
hypoxia. We examined the role of HIF in hypoxic induction of
bicarbonate transporters. We analyzed the specific role of hypox-
ia-induced SLC4A9. The physiologic role of this protein has not
been recognized in cancer, and we present data for its critical role
in pH regulation and growth. We show that SLC4A9 is important

for spheroid growth, pH regulation and survival, and growth of
xenografts in vivo.

Furthermore, to inhibit bicarbonate transport pharmacolog-
ically, we used S0859, a drug developed over a decade ago as an
inhibitor of sodium dependent bicarbonate co-transporters.
This small molecule inhibitor blocks the bulk of acid extrusion
carried by sodium-driven bicarbonate transport (7, 29, 30), but
other proteins have been shown to be sensitive to S0859
including lactate transporters ectopically expressed in oocytes
(31). We used S0859 to explore the role of sodium driven
bicarbonate transporters on 3D spheroid growth and intracel-
lular pH regulation. This study demonstrates the importance of
bicarbonate transport in pH homeostasis and tumor growth,
and identifies new molecular targets that disrupt these essential
physiologic processes.

Materials and Methods
Cell culture

Cell lines were available from ATCC (T98G, MDA-MB-468,
MDA-MB-231,MCF7), ClareHall Laboratories (HCT116, SCC25,
U87), or were a kind gift from Prof. Walter Bodmer (Weatherall
institute of Molecular Medicine, Oxford, United Kingdom;
DLD-1, Ls174T, and SW480). Cell line authentication was carried
out by STR analyses (LGC Standards) 6 months prior to the first
submission of themanuscript. Cells weremaintained in a humid-
ified incubator at 5% CO2 and 37�C. For hypoxic exposure, cells
were grown in a humidified atmosphere of 0.1% O2, 5% CO2 at
37�C. All cell lines were maintained in DMEM supplemented
with 10% FBS except HCT116 (McCoy 5A supplemented with
10% FBS) and SCC25 (DMEM:Ham F12 supplemented with
400 ng/mL hydrocortisone and 10% FBS). CyQUANT (Invitro-
gen) was used to determine differences in viable cell counts. For
spheroid culture, aggregation was initiated by plating 1,000–
5,000 cells into ultra-low–adherent round-bottom 96-well plates
(VWR) and centrifuging these at 2,000 � g. Size-matched spher-
oids for IHC were produced by seeding different number of cells
and thus preparing different spheroid sizes and treating for the
same amount of time. Media at pH 7.4 and 6.4 were prepared as
described previously (26).

Chemicals
S0859 was produced by Peter Seden (University of Oxford,

Oxford, United Kingdom) as described previously (30) or from
Sigma-Aldrich.

siRNA transfection
Cells were transfected with HiPerFect reagent (Qiagen)

according to manufacturer's instructions. Nontargeting con-
trols were purchased from Dharmacon (D-001210-02-05) and
Qiagen (1027281). siRNA oligonucleotide pools containing
three sequences targeting HIF-1a (50-CAAGCAACTGTCATATA-
TA-30, 50-TGCCACCACTGATGAATTA-30, 50-TGACTCAGCTATT-
CACCAA-30) or HIF2a (50-TAACGACCTGAAGATTGAA-30, 50-
CAAGCCACTGAGCGCAAAT-30, 50-TGAATTCTACCATGCGCT-
A-30) were purchased from Eurogentec.

Stable transduction
To knockdown SLC4A4 or SLC4A9 in Ls174T and MDA-MB-

231, shRNA lentivirus was purchased from Sigma-Aldrich. To
knockdown SLC4A9 inducibly in U87 cells, the shRNA sequence
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against SLC4A9 (CCGGGCTGAACTTGACCCATACCTACTCGA-
GTAGGTATGGGTCAAGTTCAGCTTTTTG) was cloned into Tet-
pLKO-neo (Addgene plasmid 21916; ref. 32). The CA9 knock-
down in U87 is described previously (19). Lentivirus was pro-
duced using the trans-lenti shRNA packaging kit (TLP4615), and
cells transduced according to the manufacturer's instructions
(Thermo Scientific). Cells were grown under selective pressure;
Ls174T 0.6 mg/mL G418 (Invitrogen); U87, 0.5 mg/mL G418
(Invitrogen), and 1 mg/mL puromycin (Invitrogen); and MDA-
MB-231, 2 mg/mL puromycin (Invitrogen) until no untransfected
cells remained. Pools of transfected cells were used in the Ls174T
and MDA-MB-231 experiments. To increase the knockdown effi-
ciency and doxycycline control of U87 knockdown clones derived
from single cells were selected for these isogenic investigations.

Immunoblotting
Cell lysates were separated on 10% SDS-PAGE and transferred

to PVDF membrane. Primary antibodies were used at 1:1,000.
Rabbit anti-SLC4A9 (Sigma) anti-HIF1a (BD Biosciences), anti-
HIF2a (Cell Signaling Technology) and actin-HRP (Sigma).
Appropriate secondary horseradish peroxidase–linked antibodies
were used (Dako). Immunoreactivity was detected with chemi-
luminescence (Amersham).

Quantitative PCR
RNA extraction and the quantitative PCR protocol have been

described previously (19). Data were normalized to expression
of the three control genes ACTB, RPL11, and HRPT1. Primer
sequences were: CA9 forward: CTTGGAAGAAATCGCTGAGG;
CA9 reverse: TGGAAGTAGCGGCTGAAGTC; ACTB forward:
ATTGGCAATGAGCGGTTC; ACTB reverse: GGATGCCACAG-
GACTCCAT; RPL11 forward: CTTTGGCATCCGGAGAAAT; RPL11
reverse: TCCAAGATTTCTTCTGCCTTG; HPRT1 forward:
CCAGTCAACAGGGGACATAAA; HPRT1 reverse: CACAATC-
AAGACATTCTTTCCAGT. Assay on demand were purchased
from Applied Biosystems for SLC4A1 (Hs00978603_m1),
SLC4A2 (Hs01586776_m1), SLC4A3 (Hs00192595_m1),
SLC4A4 (Hs00186798_m1), SLC4A5 (Hs00253626_m1),
SLC4A7 (Hs00186192_m1), SLC4A8 (Hs00191516_m1),
SLC4A9 (Hs00324675_m1), SLC4A10 (Hs00222849_m1),
SLC4A11 (Hs00230695_m1), SLC26A3 (Hs00230798_m1),
SLC26A4 (Hs01070620_m1), SLC26A6 (Hs00370470_m1),
SLC26A7 (Hs01104163_m1), SLC26A9 (Hs00369451_m1),
and ACTB (Hs99999903_m1).

Measurement of intracellular pH in spheroids
This was carried out as described previously (12).

Xenograft studies
Procedures were carried out under a Home Office license.

Cells were trypsinized, neutralized, and washed twice in serum-
free medium prior to inoculation in mice. Female 6- to 7-week-
old, 16–18 g, BALB/c SCID mice (CB17/IcrHsd-Prkdcscid,
Harlan) were injected orthotopically in the mammary fat pad
with 25-mL Matrigel (BD Biosciences) and 2.5 � 106 cells
suspended in 25-mL of serum-free medium or subcutaneously
in the lower flank with 100-mL Matrigel (BD Biosciences) and
1 � 107 cells suspended in 100-mL of serum-free medium.
Tumor growth was monitored three times per week measuring
the length (L), width (W), and height (H) of each tumor
using calipers. Volumes were calculated from the formula

1/6 � p � L � W � H. When tumors reached 1.44 cm3, mice
were sacrificed by cervical dislocation. Ninety minutes prior
to sacrifice, mice were injected intraperitoneally with 2 mg of
pimonidazole (Hypoxyprobe-1; Chemicon International).

Immunohistochemistry
IHC was carried out as described previously (19). Cleaved

caspase-3 (R&D Systems), Ki67 (Dako), or CA9 (M75) was
incubated for 1 hour. Slides were incubated with the anti-
rabbit secondary antibody (Dako) for 30minutes. DAB (Dako)
was applied to the sections for 7 minutes. The slides were
counterstained with hematoxylin solution (Sigma-Aldrich)
and mounted with Aquamount (VWR). Slides were analyz-
ed quantitatively by image analysis in ImageJ as described
previously (19).

Statistical analysis
Statistical analysis including unpaired Student t test, one-way

ANOVA, and linear regression of log-transformed growth data
were carried out as appropriate using GraphPad Prism 4.0b.

Results
The expression of bicarbonate transporters is increased in
hypoxia

The expression of the bicarbonate transporters of the SLC4 and
SLC26 family members in normoxia and hypoxia (0.1%O2 at 72
hours) was investigated by qRT-PCR. The expression of these
genes was investigated in 10 cell lines derived from colon cancer
(Ls174T, HCT116, SW480, andDLD-1), breast cancer (MDA-MB-
231, MDA-MB-468, and MCF7), head and neck cancer (SCC25),
and glioblastoma (U87 and T98G; Fig. 1). This revealed 38 cases
of significantly increased expression of the genes encoding bicar-
bonate transporters in response to hypoxia, and only 4 cases of
significantly decreased expression (Fig. 1). Two cell lines (T98G
and DLD-1) did not show significantly increased expression of
any of the bicarbonate transporters (Fig. 1J and Supplementary
Fig. S1I and S1J).

The pattern of hypoxia-induced expression varied between the
cell lines and there did not appear to be any tissue-specific
pattern, in this limited panel of cell lines. The bicarbonate
transporters with the highest and most frequently observed
hypoxic induction were SLC4A4 (3/10 lines), SLC4A9 (5/10),
and SLC4A5 (5/10). SLC4A4 was upregulated >100-fold in
Ls174T (P < 0.01, n ¼ 3), >3-fold in HCT116 (P < 0.001,
n ¼ 3), and >7-fold in SCC25 (P < 0.01, n ¼ 3). SLC4A9 was
increased >20-fold in Ls174T (P < 0.01, n ¼ 3), >7-fold in MDA-
MB-231 (P < 0.01, n¼ 3), >3-fold in MCF7 (P < 0.05, n¼ 3), and
>10-fold in U87 (P < 0.01, n ¼ 3; Fig. 1).

Expression levels of the bicarbonate transporters for each
cell line were calculated relative to b-actin (Supplementary
Fig. S1). This highlights the heterogeneous pattern of bicar-
bonate transporter expression in each of the cell lines studied,
as expected from RNA array data presented previously (28).
The timing of hypoxic induction of bicarbonate transporters
was investigated at 24, 48, 72, and 96 hours for all those
upregulated in hypoxia for Ls174T and U87 (Supplementary
Figs. S2 and S3). In the case of U87 cells, all changes identified
at 72 hours were also observed at the other time points. For
Ls174T, SLC4A4 was induced at all time points, whereas
SLC4A3, SLC4A5, SLC4A8, SLC4A9, and SLC26A4 were
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Figure 1.

The expression of bicarbonate transporters is increased in hypoxia. A, a table summarizing the functional role and Naþ dependence of bicarbonate
transporters of the SLC4 and SLC26 families. B–J, the relative expression of bicarbonate transporters in normoxia (black bars) and hypoxia (0.1% O2, 72 hours;
gray bars) in colorectal cancer cell lines (B–D), breast cancer cell lines (E–G), head and neck cancer cell line (H), and glioblastoma cell lines (I and J).
Error bars, SD. ��� , P < 0.001; �� , P < 0.01; � , P < 0.05; n ¼ 3.
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upregulated at 48–72 hours. The most frequently upregulated
genes SLC4A4, SLC4A5, and SLC4A9 were also investigated at
1% O2 in Ls174T, U87, and MDA-MB-231 (Supplementary
Fig. S4). SLC4A4 was significantly upregulated at 1% O2, but
increases in SLC4A5 and SLC4A9 were not significant.

Hypoxic upregulation of SLC4A4 and SLC4A9 is mediated by
HIF1a and HIF2a

HIF1a and HIF2a were knocked down by siRNA pools and
the expression of SLC4A4 and SLC4A9 was analyzed by qRT-
PCR. The increase in SLC4A4 expression induced by hypoxia
was ablated by HIF1a knockdown in Ls174T (P < 0.05, n ¼ 3;
Fig. 2A). Hypoxic induction of SLC4A9 expression was signif-
icantly reduced by HIF1a (P < 0.01, n¼ 3) or HIF2a (P < 0.001,
n ¼ 3) knockdown in Ls174T with HIF2a knockdown
having a greater effect on SLC4A9 hypoxic inducibility in
Ls174T (>75%, compared with <25% with HIF1a knockdown;
Fig. 2B). In MDA-MB-231, HIF1a knockdown significantly
reduced hypoxic induction of SLC4A9 (P < 0.05, n ¼ 3;
Fig. 2C) but no significant effect was observed with HIF2a
knockdown. The siRNA knockdown was validated by qRT-PCR
quantification and immunoblot of the expression of both
HIF1a and HIF2a and also by measuring CA9 RNA levels,
which has been previously shown to be dependent on HIF1a
but not HIF2a (Fig. 2D and Supplementary Fig. S5 and
previously published; ref. 33). HIF-binding site sequences

(RCGTG) are found in the promoter regions of both SLC4A4
(�786, �1690) and SLC4A9 (�692, �1865, �1921).

SLC4A4 and SLC4A9 knockdown reduces spheroid
growth rate

SLC4A4 was knocked-down in Ls174T with two different
shRNAs, which significantly reduced expression of SLC4A4 in
response to hypoxia (P < 0.001, n ¼ 3; Fig. 3A). SLC4A9 protein
levels were increased by hypoxia in Ls174T, MDA-MB-231, and
U87 (Fig. 3B, E, and H). SLC4A9-targeting shRNA significantly
reduced hypoxic induction of SLC4A9 expression at both the
mRNA and protein levels (Fig. 3A, B, D, E, G, and H), in Ls174T,
MDA-MB-231, and U87, compared with controls. A full repre-
sentative SLC4A9 blot is shown in Supplementary Fig. S6 (MDA-
MB-231).

SLC4A4 knockdown reduced Ls174T spheroid growth rate
by 30% compared with shCTL controls (P < 0.001, n ¼ 4;
Fig. 3C). SLC4A9 knockdown reduced spheroid growth rate
compared with controls in Ls174T (30% reduction, P < 0.001,
n ¼ 4), MDA-MB-231 (39% reduction, P < 0.05, n ¼ 3) and
U87 (60% reduction, P < 0.001, n ¼ 3; Fig. 3C, F, and I).
In U87 stable doxycycline-inducible shRNAs were used to
knockdown SLC4A9, followed by clone selection. The clone
with the best knockdown also had a higher level of SLC4A9
expression in hypoxia than the control cells (Fig. 3G; P <
0.001, n ¼ 3). In 3D culture, the shSLC4A9 cells without

Figure 2.

Hypoxic induction of SLC4A4 and
SLC4A9 is regulated byHIF. The relative
expression of SLC4A4 (A) and SLC4A9
(B and C) in normoxia and hypoxia
(0.1% O2, 72 hours) after cells were
transfected with control (siCTL), HIF1a
(siHIF1a), or HIF2a (siHIF2a) siRNA. D,
protein validation of siHIF1a and
siHIF2a in Ls174T in hypoxia (0.1% O2,
72 hours). Error bars, SD. ��� , P < 0.001;
�� , P < 0.01; � , P < 0.05; n ¼ 3.
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doxycycline grew significantly faster as spheroids than the
shCTL cells with or without doxycycline induction of the
shRNA (P < 0.001, n ¼ 3).

Knockdown of SLC4A4 or SLC4A9 does not reduce cell growth
in normoxia or hypoxia in 2D culture

In 2D culture, knockdownof SLC4A4or SLC4A9did not reduce
the number of viable cells in Ls174T, MDA-MB-231, or U87
(Supplementary Fig. S6A–S6C) in normoxia or hypoxia at either
pH 7.4 or 6.4 (26).

Inhibition of sodium-driven bicarbonate transporters by
S0859 reduces spheroid growth rate

S0859 (100 mmol/L) reduced spheroid growth in Ls174T
(13%, P < 0.05, n ¼ 3), MDA-MB-231 (48%, P < 0.01, n ¼ 3),
and U87 (37%, P < 0.05, n ¼ 3) cell lines (Fig. 4A–C). The
results for S0859 treatment of MDA-MB-231 are truncated at

day 11 as these spheroids consistently disintegrated at day 12.
As shown previously (19), doxycycline-inducible CA9 knock-
down reduced U87 spheroid growth rate (37%, P < 0.05, n¼ 3).
S0859 treatment in combination with CA9 knockdown further
reduced spheroid growth in U87 (70%, P < 0.001, n ¼ 3;
Fig. 4D). S0859 treatment did not reduce the growth rate of
DLD-1 (a cell line that lacked hypoxic induction of bicarbonate
transporters) spheroids; however, S0859 did affect the gross
appearance of DLD-1 spheroids (Supplementary Fig. S7).

Sodium-driven bicarbonate transport regulates intracellular
pH in 3D spheroids

SLC4A9 knockdown resulted in more acidic steady-state
intracellular pH in MDA-MB-231 spheroids (P < 0.05, n ¼
10 at the periphery and P < 0.01, n¼ 10 at the core of spheroids,
pH difference �0.08 at the periphery and �0.14 at the core;
Fig. 5A). S0859 (100 mmol/L) treatment resulted in lower

Figure 3.

SLC4A4 and SLC4A9 knockdown reduce spheroid growth rate. A, D, and G, the expression of SLC4A4 and SLC4A9 in control (shCTL) and shRNA
knockdown (shSLC4A4 1 and 2 in Ls174T and shSLC4A9 in Ls174T, MDA-MB-231, and U87, respectively) at 72 hours normoxia or hypoxia (0.1%
oxygen). B, E, and H, the representative Western blots of SLC4A9 knockdown in control (shCTL) and shSLC4A9 knockdown cells (Ls174T,
MDA-MB-231, and U87, respectively) at 72 hours normoxia or hypoxia (0.1% oxygen). C, F, and I, representative graphs of the effect of SLC4A4 or
SLC4A9 knockdown on spheroid growth in Ls174T, MDA-MB-231, and U87, respectively. U87 have doxycycline (DOX)-inducible SLC4A9 knockdown.
Error bars, SD. ��� , P < 0.001; � , P < 0.05; n ¼ 3.
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steady-state intracellular pH in spheroids of MDA-MB-231 (P <
0.01, n¼ 10 at the periphery and P < 0.001, n¼ 10 at the core of
spheroids, pH difference �0.11 at the periphery and �0.19 at
the core; Fig. 5A) and U87 (P < 0.001, n ¼ 20 at the periphery
and the core of spheroids, pH difference �0.08 at the periphery
and �0.29 at the core; Fig. 5B). In MDA-MB-231 spheroids,
either SLC4A9 knockdown or S0859 treatment resulted in a
steeper radial gradient of intracellular pH across the spheroid
(S0859; P < 0.05, n ¼ 10 and shSLC4A9; P < 0.05, n ¼ 10)
(Supplementary Fig. S8).

In U87 spheroids, the effect of S0859 on intracellular pH was
greatest at the periphery rather than the core (Fig. 5B). To
explore the reasons for this effect, size-matched U87 spheroids
were immunostained for HIF1a, CA9, and Ki67 (a marker for
proliferation; Fig. 5D). This revealed that HIF1a is stabilized
throughout most of the U87 spheroid, except a single-cell rim at
the periphery. Accordingly, the pattern of CA9 expression was
similar to that of HIF1a. Ki67 positivity was greater at the
periphery of spheroids compared with the core (Fig. 5C).
Investigation of the impact of S0859 on the Ki67 positivity
(Supplementary Fig. S7) showed a significant reduction (from
24% to 2% P < 0.001) for Ki67 positivity. The reliance on CA9
and bicarbonate transport for pH control is likely to be greatest
where the cells are undergoing active proliferation and produce
greater quantities of metabolic acid. In U87 spheroids, SLC4A9
knockdown had a similar effect on intracellular pH as with
MDA-MB-231 spheroids, where the greatest effect was observed
at the core of the spheroid (P < 0.01, DpH¼ pHperiphery–pHcore¼
�0.09 at the periphery and P < 0.001, DpH ¼ �0.22 at the
core of spheroids; Fig. 5C). Measurements of the dynamics
of intracellular pH recovery demonstrated that SLC4A9 is a
key acid-extruding protein, particularly important at the core
of the spheroid (P < 0.001, DpH ¼ �0.20; P < 0.05, DpH ¼
�0.04; Fig. 5E and F).

Knockdown or inhibition of sodium-driven bicarbonate
transporters increases apoptosis in the core of spheroids

NDBT knockdown or S0859-treated spheroids were stained
for cleaved caspase-3 (a marker for apoptosis). SLC4A4 knock-
down did not increase apoptosis in Ls174T (Fig. 6A). In
contrast, SLC4A9 knockdown increased apoptosis in MDA-
MB-231 (P < 0.01, n ¼ 3) but not in Ls174T or U87
(Fig. 6A–C). S0859 increased apoptosis in Ls174T (P < 0.01,
n ¼ 3), MDA-MB-231 (P < 0.001, n ¼ 3), and U87 (P < 0.001,
n ¼ 3; Fig. 6D–F).

SLC4A9 knockdown reduces tumor growth rate in vivo
Doxycycline-inducible SLC4A9 knockdown reduced the

growth of U87 xenografts by 92% (P < 0.0001, n ¼ 7; Fig. 7).
There was no effect of doxycycline on U87 shCTL control xeno-
graft growth rates (Supplementary Fig. S8). SLC4A9 knockdown
reduced the growth rate ofMDA-MB-231orthotopic xenografts by
79% (P < 0.0001, n ¼ 6; Fig. 7).

Discussion
The increased acidity associated with the hypoxic tumor

microenvironment places additional stress on cells already
under metabolic adaptation to low oxygen. HIF increases the
expression of many pH-regulating proteins (34–36). Cells
within the hypoxic microenvironment may then become
sensitive to inhibition or knockdown of pH-regulatory pro-
teins resulting in induced essentiality or context-dependent
lethality (37).

Here, we identify increased expression of several bicarbonate
transporters in response to hypoxia across a panel of cell lines
from four different cancer types. 0.1% O2 was used in these
investigations as the physiologically relevant oxygen partial pres-
sure for tumors, based on in vivo oxygen electrode measurements.

Figure 4.

Disruption of NDBTs reduces spheroid
growth rate. Representative graphs of
the effect of the inhibition of NDBT by
S0859 on spheroid growth of Ls174T
(A), MDA-MB-231 (B), U87 controls
[doxycycline (DOX)-inducible shCTL;
C], and U87 with doxycycline-inducible
CA9 knockdown (shCA9; D). Error
bars, SD. ��� , P < 0.001; �� , P < 0.01;
� , P < 0.05; n ¼ 3.
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For example, approximately 25% of head and neck, breast, and
uterine cervix tumors have a pO2 of �2.5 mmHg equivalent to
0.32% oxygen (38). Investigations at 1% oxygen identified fewer
statistically significant changes. We tested whether the hypoxic
induction of SLC4A4 and SLC4A9 was dependent on HIF1a or
HIF2a (Fig. 2). SLC4A9wasmost profoundly regulated byHIF2a
in Ls174T and byHIF1a inMDA-MB-231. Similar examples from
different cell lines of other genes that are regulated by alternate
HIF proteins have been identified previously. For example, VEGF
is primarily regulated by HIF1a in MCF7 cells and by HIF2a in
RCC4 cells (39). Indeed, the hypoxic regulation of gene expres-
sion by HIF1a and HIF2a is complex and dependent upon
cofactors and epigenetics. This regulatory complexitymay explain
the heterogeneity in patterns of expression for the bicarbonate
transporters. Nonetheless, we have been able to identify a general
upregulation of one or more functionally related NDBTs in the
majority of cell lines investigated. Further investigations would be

required to identify if factors in addition toHIF are involved in the
regulation of the hypoxic induction of these bicarbonate trans-
porters. SLC4A7 had high relative levels of expression, but was
only significantly upregulated inHCT116 andwas downregulated
in SCC25. SLC4A7 has been investigated previously and was
found to be regulated by ErbB1, 2, and 3 in breast cancer cell
lines (28). The significance of SLC4A7 in cancer has been reviewed
in ref. 28.

We show that knockdown or inhibition of sodium-driven
bicarbonate transporters acidifies the pH of cells in spheroids.
For SLC4A9 knockdown inMDA-MB-231 andU87 and for S0859
treatment inMDA-MB-231, this effect was greatest at the spheroid
core. Similarly, measurements of intracellular pH recovery in U87
spheroids demonstrated clearly that SLC4A9 had amore substan-
tial effect on pH regulatory fluxes at the core. In U87, the effect of
S0859 treatment was present across the spheroid with most
pronounced pHi difference at the spheroid periphery. Given the

Figure 5.

NDBTs regulate intracellular pH in 3D
spheroids. Measurements of the
intracellular pH of MDA-MB-231 (A) and
U87 spheroids (B, C, E, and F). The
intracellular pH is averaged in 10
concentric rings in the spheroid and
data points for each concentric ring is
shown in the middle of each ring. Effect
of treatment with S0859 (100 mmol/L)
for 1 hour on MDA-MB-231 (A) and U87
spheroids (B) and SLC4A9 knockdown
on MDA-MB-231 (A) and U87 spheroids
(C, E, and F). A–C, resting pH
measurements. E and F, recovery of
intracellular pH after ammonium
prepulse. C, representative images of
staining for CA9, HIF1a, and Ki67 (dark
brown staining denotes positivity) of
U87 spheroids. Scale bars, 200 mm.
Error bars, SE. ��� , P <0.001; �� , P <0.01;
P < 0.05; n ¼ 20 (MDA-MB-231);
n ¼ 10–15 (U87).

Hypoxic NDBT Induction Promotes Tumor Growth
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Figure 6.

Knockdown or inhibition of NDBTs increases
apoptosis in the core of spheroids. SLC4A9
knockdown increased cleaved caspase-3
positivity in MDA-MB-231 but not in Ls174T or
U87 (A–C). SLC4A4 knockdown did not
increase apoptosis in Ls174T (A). S0859
treatment increased cleaved caspase-3
positivity in Ls174T, MDA-MB-231, and U87
(D–F). Error bars, SD; ��� ,P>0.001; �� ,P<0.01;
n ¼ 3.
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increasedhypoxic expressionof sodium-driven bicarbonate trans-
porters and the exacerbated acid stress in the hypoxic microen-
vironment, we expected a greater effect of knockdown/inhibition
at the core of spheroids. The surprising effects on pH in U87
spheroids can be explained in terms of greater cell proliferation,
andhencemetabolic acid production, near the periphery,which is
already considerably hypoxic (based on HIF and CA9 staining).
S0859 markedly reduces Ki67 positivity (proliferation) at the
periphery of U87 spheroids, and therefore the associated meta-
bolic acid production. An effect on the intracellular pH in periph-
eral regions would also be consistent with inhibition of a mem-
brane transporter active throughout the spheroid, responsible for
setting steady-state intracellular pH. Thus, ablation of such an
acid-extruding transporter would result in a drift toward the acidic
direction of steady-state pH across all spheroid regions. The
difference in the effects of SLC4A9 knockdown versus S0859
treatment on intracellular pH in U87 is likely due to the breadth
of targeting: knockdown eliminates a specificNDBT gene product,
whereas S0859 targets multiple bicarbonate transporters.

We showed that knockdown or inhibition of sodium-driven
bicarbonate transport reduced spheroid growth rate, in agreement
with reduced intracellular pH, a known suppressor of prolifera-
tion (8, 19). Furthermore, we showed that S0859 treatment had a
greater effect on spheroid growth when combined with CA9
knockdown. This suggests that combined bicarbonate transporter
and CAIX targeting may provide the greatest therapeutic impact.
Bicarbonate transport is important for regulating the intracellular
pH (hence growth) not only in hypoxic but also normoxic tumor
microenvironment. However, increased bicarbonate transporter
expression in hypoxia would offer an advantage, particularly if
coupled with a stimulated rate of metabolic acid production.
However, in the case of cell lines with high normoxic (i.e.,
baseline) levels of bicarbonate transport, additional hypoxic
induction may not yield an advantage, as for the case for DLD-1
(Supplementary Fig. S1).

SLC4A4 knockdown in Ls174T cells, and SLC4A9 knockdown
in LS174T, MDA-MB-231, and U87 did not reduce the number of
viable cells in 2D culture in normoxia or hypoxia at pH 7.4 or 6.4
(26). This suggests that studies in 2D do not recapitulate the
properties of 3D tissue, in which SLC4A4 and SLC4A9 clearly play
a major homeostatic role. These additional properties, evident
only in 3D tissue, may relate to stresses associated with the
hypoxic microenvironment, such asmetabolic stress and expand-
ed diffusion distances.

A key result from this study is the increased apoptosis
identified in spheroids with SLC4A9 knockdown in MDA-
MB-231 or S0859 treatment in MDA-MB-231, U87, and

Ls174T. The large increase in apoptosis at the core of MDA-
MB-231 spheroids is the probable cause of spheroid disinte-
gration at day 12. In contrast, the degree of apoptosis seen with
S0859 in U87 spheroids is small and unlikely to have as
significant a clinical impact (regression) as the effect seen upon
reducing proliferation for these cells. The absence of an
increase in apoptosis in U87 and Ls174T with knockdown of
a single bicarbonate transporter may be due to a compensatory
effect by one or more other transporters that are also increased
in hypoxia. In MDA-MB-231, we showed a similar effect with
knockdown of SLC4A9 alone and treatment with S0859. Like
most pharmacologic inhibitors, recent data identified possible
off-target effects of S0859 including inhibition of lactate
transporters ectopically expressed in oocytes (31). Given the
similarities in responses between S0859 and the NDBT knock-
down studies, it is likely that the NDBT are the major targets
here as described previously (7, 29, 30).

Finally, we show that SLC4A9 is important for xenograft
growth in vivo, and that this effect was more substantial than in
3D in vitro models. This protein has not been studied in the
context of cancer, and therefore is a novel target. The depen-
dency on one type of transporter argues that these can specialize
to an extent that cannot be compensated for by other proteins
in these cells. Knockdown of NDBT transporters with addition-
al shRNA sequences or reexpression of NDBT after the shRNA
knockdown would provide extra validation to the approaches
utilized here.

A recent publication highlighted the possible impact of doxy-
cycline on mitochondrial gene expression (40). In our experi-
ments, we included doxycycline-treated controls for both the in
vivo (Supplementary Fig. S8B) and in vitro (Figs. 3I and 4C)
studies and no effect of doxycycline alone was identified. Fur-
thermore we have combined the treatment of U87 shCTL cells
with doxycycline and the NBDT inhibitor S0859 in long-term
spheroid experiments (Fig. 4C). There was no additional impact
on growth when doxycycline treatment is combined with NDBT
inhibition compared with NDBT inhibition alone. These data
suggest that the possible mitochondrial impact of doxycycline is
unlikely to be producing a combination effect in our studies.
However it is possible that when doxycycline is combined with
drugs/gene knockdown that reduce the rate of glycolysis the
interpretation of the results would become more difficult. The
NBDT inhibitor S0859 used here also inhibits other pH regula-
tors such as MCT1 (at 10 mmol/L), MCT2 (at 4 mmol/L), and
MCT4 (at 5 mmol/L) (31) and these may also contribute to its
effectiveness, although no greater effect than the knockdown of a
single transporter was seen.

Figure 7.

Knockdown of NDBT SLC4A9 reduces
xenograft growth. SLC4A9 knockdown
reduced growth of U87 (glioblastoma,
n ¼ 7; A) and MDA-MB-231 (breast
cancer, n¼ 6; B) xenografts. Error bars,
SD. ���� , P < 0.0001.
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Further to the effect of hypoxia on the expression of acid-
extruding bicarbonate transporters, acid-loading bicarbonate
transporters also showed increased expression in at least one cell
line. Acid-extruders generate flux in the acidic range of intracel-
lular pH; whereas acid-loaders are activated at high intracellular
pH. The fluxes are balanced (i.e., equal but opposite) at resting
intracellular pH. An increase in the expression (hence activity) of
acid extruders will protect cells more effectively from acid chal-
lenges. However, if acid extruders alone were upregulated, steady-
state intracellular pH would drift towards more alkaline values,
which may not be permissive for cells. Thus, to bring steady state
(i.e., setpoint) intracellular pH to normal levels, acid loaders
would need to be upregulated concurrently. Thus, higher acid
extrusion and acid-loading fluxes, attained by hypoxia-induction
of their genes, produces a homeostatic system that protects
intracellular pH better (faster) without shifting steady-state
(set-point) intracellular pH. The functional significance of this
observed effect at expression levels merits further investigation
with detailed flux analyses.

The lack of strong correlation between the expression of bicar-
bonate transporters and hypoxic markers (e.g., CA9; ref. 28) is
consistent with the isoform-dependent hypoxic regulation of
bicarbonate transporters across cell lines. Thus, there is consid-
erable heterogeneity in how tumor cells regulate their pH, and this
will be essential to study in clinical studies, where pH can be
measured by MRS, and NDBT and CA9 expression can be ana-
lyzed by PCR and IHC.

Given the probable utility of targeting sodium-driven bicar-
bonate transport in cancer, it is important to consider toxicity.
Gene knockout studies in mice provide further insight into
likely toxicity of systemic NDBT inhibition. SLC4A4 knockout
mice have multiple abnormalities including: metabolic acido-
sis, growth retardation, and death before weaning (41). Human
patients with homozygous SLC4A4-inactivating muta-
tions exhibit ocular abnormalities and renal tubular acidosis
(42, 43). Homozygous SLC4A5 mutation in mice resulted in
metabolic acidosis and arterial hypertension (44). Mice lacking
SLC4A7 develop blindness and auditory impairment (45).
SLC4A9 knockout mice have no obvious phenotypic abnor-
malities (46). SLC4A10 plays a role in control of neuronal pH
and excitability and cerebrospinal fluid secretion (47, 48). The
majority of effects, but not all, associated with NDBT gene
knockouts or homozygous deletions is developmental in path-
ogenesis, suggesting that targeting one or more of these may be
viable. In particular, the striking effects of SLC4A9 knockdown
on tumor growth in vivo and the lack of reported phenotypic
abnormalities in SLC4A9 knockout mice make it an ideal
candidate for specific inhibition. Alternatively, given the depen-
dence of cells in the hypoxic microenvironment on NDBT for
survival, utilizing a hypoxia-activated prodrug would enable
targeting tumor cells in the hypoxic therapy–resistant micro-
environment in combination treatments (49). Targeting NDBT

has the advantage over targeting CA9 as inhibition or knock-
down induces increased apoptosis, whereas CA9 inhibition/
knockdown decreases apoptosis (19). The mechanism here is
significantly different to that proposed for buffer therapy (50).
Buffer therapy increases systemic bicarbonate with the aim to
neutralize extracellular acidosis (50). In contrast, blocking
bicarbonate transport disrupts intracellular acid–base homeo-
stasis. Interestingly, inhibition of cellular bicarbonate uptake
may, in fact, raise extracellular buffering by transferring bicar-
bonate out of the acidified intracellular compartment (that,
when alkaline, stores most of the tissue's bicarbonate). Effec-
tively, this may improve buffer therapy efficacy.

In summary, we identified hypoxic regulation of tumor pH,
via sodium-driven bicarbonate transporters in a panel of cell
lines across four tumor types. We showed profound effects of
inhibition of SLC4A9 in vivo showing the importance of this
transporter in the tumor microenvironment. Targeting sodium-
driven bicarbonate transport should be an effective useful
strategy for combination with hypoxia inducing antiangiogenic
therapy.
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