8,044 research outputs found
Composite vertices that lead to soft form factors
The momentum-space cut-off parameter of hadronic vertex functions
is studied in this paper. We use a composite model where we can measure the
contributions of intermediate particle propagations to . We show that
in many cases a composite vertex function has a much smaller cut-off than its
constituent vertices, particularly when light constituents such as pions are
present in the intermediate state. This suggests that composite
meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda
considerably less than 1 GeV. We discuss the origin of this softening of form
factors as well as the implications of our findings on the modeling of nuclear
reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request
Parameter Inference in the Pulmonary Circulation of Mice
This study focuses on parameter inference in a pulmonary blood cir- culation model for mice. It utilises a fluid dynamics network model that takes selected parameter values and aims to mimic features of the pulmonary haemody- namics under normal physiological and pathological conditions. This is of medical relevance as it allows monitoring of the progression of pulmonary hypertension. Constraint nonlinear optimization is successfully used to learn the parameter values
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
We present and demonstrate a general three-step method for extracting the
quantum efficiency of dispersive qubit readout in circuit QED. We use active
depletion of post-measurement photons and optimal integration weight functions
on two quadratures to maximize the signal-to-noise ratio of the
non-steady-state homodyne measurement. We derive analytically and demonstrate
experimentally that the method robustly extracts the quantum efficiency for
arbitrary readout conditions in the linear regime. We use the proven method to
optimally bias a Josephson traveling-wave parametric amplifier and to quantify
different noise contributions in the readout amplification chain.Comment: 10 pages, 6 figure
Estimation des niveaux d'inondation pour une crue éclair en milieu urbain : comparaison de deux modèles hydrodynamiques sur la crue de Nîmes d'octobre 1988
Lors des crues extrêmes en ville, une forte part des écoulements reste en surface. Pour simuler ces inondations, deux modèles sont présentés : le logiciel REM2 U unidimensionnel a pour objectif de simuler la propagation des débits de crue dans l'ensemble d'un réseau de rues alors que le logiciel Rubar 20 bidimensionnel vise à fournir plus d'information sur ces écoulements. Des calculs avec ces deux logiciels ont été menés sur la crue d'octobre 1988 dans un quartier de Nîmes. Lors de cet événement, les hauteurs d'eau maximales ont dépassé deux mètres en certains points et les vitesses 2 m/s ce qui entraînait des passages en régime torrentiel. A partir des données rassemblées sur les sections en travers des rues, des maillages de calcul limités au réseau de rues ont été construits pour les deux logiciels afin de permettre un calcul détaillé. La comparaison des résultats avec les laisses de crue montre des situations très contrastées d'un point à un autre pour une hauteur d'eau maximale moyenne sur l'ensemble de la zone inondée correctement simulée. L'écart sur cette hauteur est, en moyenne, de 1 m ce qui provient des incertitudes sur les observations, sur la topographie et sur les conditions aux limites, des approximations lors de la modélisation et de particularités locales non décrites. Entre les deux logiciels, l'évolution des hauteurs et des vitesses est généralement très proche bien que, comme pour la comparaison avec les laisses de crue, des différences locales importantes sont observées.The hydraulic models that are used to simulate floods in rural areas are not adapted to model floods through urban areas, because of details that may deviate flows and create strong discontinuities in the water levels, and because of the possible water flow running in the sewage network. However, such modelling is strongly required because damage is often concentrated in urban areas. Thus, it is necessary to develop models specifically dedicated to such floods. In the southern part of France, rains may have a high intensity but floods generally last a few hours. During extreme events such as the October 1988 flood in the city of Nîmes, most of the flow remained on the ground with high water depths and high velocities, and the role of sewage network can be neglected. A 1-D model and a 2-D model were used to calculate such flows, which may become supercritical. On the catchments of the streams which cross the city of Nîmes, the rainfall was estimated as 80 mm in one hour and 250 mm in six hours in October 1988, although some uncertainties remain. The return period can be estimated between 150 and 250 years. The zone selected to test the models was an area 1.2 km long and less than 1 km wide in the north-eastern part of the city. It includes a southern part with a high density of houses. The slope from the North (upstream) to the South (downstream) was more than 1 % on average and was decreasing from North to South. Various topographical and hydrological data were obtained from the local Authorities. The basic data were composed of 258 cross sections of 69 streets with 11 to 19 points for each cross section. Observations of the limits of the flooded areas and of the peak water levels at more than 80 points can be used to validate the calculation results. The inputs consisted of two discharge hydrographs, estimated from a rainfall-discharge model from rains with a return period of 100 years, which may result in an underestimate of these inputs. These two hydrographs correspond to the two main structures that cross the railway embankment, which constitutes an impervious upstream boundary of the modelled area. Whereas the western and eastern boundaries are well delimitated by hills above maximum water levels, the downstream southern boundary is somewhat more questionable because of possibilities of backwater and inflows from neighbouring areas.The 1-D software REM2U solved the Saint Venant equations on a meshed network. At crossroads, continuities of discharge and of water heads were set. The hydraulic jump was modelled by a numerical diffusion applied wherever high water levels were found. The Lax Wendroff numerical scheme was implemented. It included a prediction step and a correction step, which implied precise solving of these very unsteady and hyperbolic problems. The software was validated on numerous test cases (Al Mikdad, 2000) which proved the adaptation to problems of calculations in a network of streets.The 2-D software Rubar 20 solves 2-D shallow water equations by an explicit second-order Van Leer type finite volume scheme on a computational grid made from triangles and quadrilaterals (Paquier, 1998). The discontinuities (hydraulic jumps for instance) are treated as ordinary points through the solving of Riemann problems. For the Nîmes case, the grid was built from the cross sections of the streets. Four grids were built with respectively 4, 5, 7 or 11 points for every cross section and these points correspond to the main characteristics of the cross section: the walls of the buildings, the sidewalks, the gutters and the middle point. The simplest crossroads were described from the crossings of the lines corresponding to these points, which provide respectively 16, 25, 49 or 121 computational cells. The space step was about 25 metres along the streets but went as low as 0.1 m in the crossroads; due to the explicit scheme, which implies that the Courant number was limited to 1, the time step was very small and a long computational time was required.The computations were performed with a uniform Strickler coefficient of 40 m1/3/s. Both 1-D and 2-D models provided results that agreed well with observed water levels. The limits of the flooded area were also quite well simulated. However, locally, the differences between calculated and observed maximum water depths were high, resulting in an average deviation of about 1 metre. The reasons for such deviations could come from three main causes. First, the uncertainty of topographical data is relatively high, because of the interpolation between measured cross sections without a detailed complementary DEM (digital elevation model). Second, the observed levels were also uncertain and reveal local situations that are not reconstructed by the hydraulic models which provided maximum water levels averaged on one cell which may not coincide with the exact location of the observations. Finally, modelling means a simplification of the processes, which implies cancelling the level variations due to some obstacles, such as cars, which are not simple to identify.In conclusion, both software packages can model a flood, even a flash flood, in an urbanised area. Research is still necessary to develop methods to fully use urban databases in order to define details more precisely. The improvements to the 1-D software should include a better modelling of storage and of crossroads with an integration of adapted relations for the head losses. 2-D software has a greater potential but the difficulty to build an optimal computational grid means a long computational time, which limits the use of such software to small areas. For both software packages, methods still need to be developed in order to represent exchanges with the sewage network, storage inside buildings and inputs directly coming from rainfall
Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo.
BackgroundProstate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study.MethodsProstaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice.ResultsProstate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells.ConclusionHuman prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells
PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines
A simplified model of a low speed large two-stroke marine diesel engine cylinder is developed. The effect of piston position on the in-cylinder swirling flow during the scavenging process is studied using the stereoscopic particle image velocimetry technique. The measurements are conducted at different cross-sectional planes along the cylinder length and at piston positions covering the air intake port by 0, 25, 50 and 75%. When the intake port is fully open, the tangential velocity profile is similar to a Burgers vortex, whereas the axial velocity has a wake-like profile. Due to internal wall friction, the swirl decays downstream, and the size of the vortex core increases. For increasing port closures, the tangential velocity profile changes from a Burgers vortex to a forced vortex, and the axial velocity changes correspondingly from a wake-like profile to a jet-like profile. For piston position with 75% intake port closure, the jet-like axial velocity profile at a cross-sectional plane close to the intake port changes back to a wake-like profile at the adjacent downstream cross-sectional plane. This is characteristic of a vortex breakdown. The non-dimensional velocity profiles show no significant variation with the variation in Reynolds numbe
Evaluation of the taste-masking effects of (2-hydroxypropyl)-β-cyclodextrin on ranitidine hydrochloride; a combined biosensor, spectroscopic and molecular modelling assessment
Taste assessment in an increasingly important aspect of formulation development, particularly for paediatric medications. Electronic taste sensing systems have the potential to offer a rapid, objective and safe method of taste assessment prior to the use of more costly human panels or animal models. In this study, the ability of the TS-5000Z taste sensing system to assess the taste masking efficiency of (2-hydroxypropyl)-β-cyclodextrin (HP-β-CyD) complexes with ranitidine hydrochloride was evaluated in order to explore the potential of the biosensor approach as a means of assessing taste masking by inclusion complexation. Nuclear magnetic resonance (NMR) spectroscopy and molecular docking studies were employed to identify and examine the interaction between ranitidine hydrochloride and HP-β-CyD. Taste-masking efficiencies were determined by the Euclidean distance between taste-masked formulations and the pure drug substance on a PCA score plot. The results showed that with increasing molarity of HP-β-CyD in the formulation, the distance from ranitidine hydrochloride increased, thus indicating a significant difference between the taste of the formulation and that of the pure drug. NMR studies also provided strong supporting evidence for the complexation between HP-β-CyD and ranitidine hydrochloride, with the H3′ region of the former identified as the most likely binding site for the drug. Molecular docking studies suggested that the dimethylamino and diamine groups of the drug form direct hydrogen bonds with the hydroxyl oxygen atoms of HP-β-CyD, while the furan ring docks in close proximity to H3′. This study has demonstrated that the biosensor system may provide quantitative data to assess bitterness of inclusion complexes with HP-β-CyD, while spectroscopic and modelling studies may provide a mechanistic explanation for the taste masking process. This in turn suggests that there is a role for biosensor approaches in providing early screening for taste masking using inclusion complexation and that the combination with mechanistic studies may provide insights into the molecular basis of taste and taste masking
Kinetic Study of Esterification Reaction
The Esterification kinetics of acetic acid with ethanol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 50-60°C and at a different molar ratio of ethanol to acetic acid [EtOH/Ac]. Investigation of kinetics of the reaction indicated that the low of [EtOH/Ac] molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 80% was obtained at 60°C for molar ratio of 10 EtOH/Ac. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. Activity coefficients were calculated using UNIFAC program. Results showed deviation in activation energy in the non-ideal system of about 20% this is due to the polarities of water and ethanol compared to the non-polar ethyl acetate this dissimilarity leading to strong non- ideal behavior. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated form the kinetic model in agreement with the measured chemical equilibrium
- …
