13,669 research outputs found
Cosmic Censorship: As Strong As Ever
Spacetimes which have been considered counter-examples to strong cosmic
censorship are revisited. We demonstrate the classical instability of the
Cauchy horizon inside charged black holes embedded in de Sitter spacetime for
all values of the physical parameters. The relevant modes which maintain the
instability, in the regime which was previously considered stable, originate as
outgoing modes near to the black hole event horizon. This same mechanism is
also relevant for the instability of Cauchy horizons in other proposed
counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi
Numerical investigation of black hole interiors
Gravitational perturbations which are present in any realistic stellar
collapse to a black hole, die off in the exterior of the hole, but experience
an infinite blueshift in the interior. This is believed to lead to a slowly
contracting lightlike scalar curvature singularity, characterized by a
divergence of the hole's (quasi-local) mass function along the inner horizon.
The region near the inner horizon is described to great accuracy by a plane
wave spacetime. While Einstein's equations for this metric are still too
complicated to be solved in closed form it is relatively simple to integrate
them numerically.
We find for generic regular initial data the predicted mass inflation type
null singularity, rather than a spacelike singularity. It thus seems that mass
inflation indeed represents a generic self-consistent picture of the black hole
interior.Comment: 6 pages LaTeX, 3 eps figure
Stability of degenerate Cauchy horizons in black hole spacetimes
In the multihorizon black hole spacetimes, it is possible that there are
degenerate Cauchy horizons with vanishing surface gravities. We investigate the
stability of the degenerate Cauchy horizon in black hole spacetimes. Despite
the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we
find that the Cauchy horizon is stable against the classical perturbations, but
unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde
Recommended from our members
The use of tools and checklists to assess the risk of child sexual exploitation: lessons from UK practice
Tools to assess the risk of becoming a victim of child sexual exploitation (CSE) have been developed by UK CSE practitioners based on their professional experiences, with little evidence underpinning their development, and no evaluation/validation. Little is known about how they are used in practice. This paper summarizes two studies. The first study consisted of a rapid review to identify factors associated with increased or decreased risk of vulnerability to becoming a victim of CSE and the assessment of 10 tools being used in the UK. The second study undertook interviews and online survey with professionals across multi-agencies to establish the use of tools. Results illustrate the context and processes in which the tools are being used and identify concerns regarding their ability to identify and protect children
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
Gravitational collapse from smooth initial data with vanishing radial pressure
We study here the spherical gravitational collapse assuming initial data to
be necessarily smooth, as motivated by the requirements based on physical
reasonableness. A tangential pressure model is constructed and analyzed in
order to understand the final fate of collapse explicitly in terms of the
density and pressure parameters at the initial epoch from which the
collapsedevelops. It is seen that both black holes and naked singularities are
produced as collapse end states even when the initial data is smooth. We show
that the outcome is decided entirely in terms of the initial data, as given by
density, pressure and velocity profiles at the initial epoch, from which the
collapse evolves.Comment: 10 pages,3 figures,revtex4,Revised Versio
A power filter for the detection of burst sources of gravitational radiation in interferometric detectors
We present a filter for detecting gravitational wave signals from burst
sources. This filter requires only minimal advance knowledge of the expected
signal: i.e. the signal's frequency band and time duration. It consists of a
threshold on the total power in the data stream in the specified signal band
during the specified time. This filter is optimal (in the Neyman-Pearson sense)
for signal searches where only this minimal information is available.Comment: 3 pages, RevTeX, GWDAW '99 proceedings contribution, submitted to
Int. J. Modern Phys.
The late-time singularity inside non-spherical black holes
It was long believed that the singularity inside a realistic, rotating black
hole must be spacelike. However, studies of the internal geometry of black
holes indicate a more complicated structure is typical. While it seems likely
that an observer falling into a black hole with the collapsing star encounters
a crushing spacelike singularity, an observer falling in at late times
generally reaches a null singularity which is vastly different in character to
the standard Belinsky, Khalatnikov and Lifschitz (BKL) spacelike singularity.
In the spirit of the classic work of BKL we present an asymptotic analysis of
the null singularity inside a realistic black hole. Motivated by current
understanding of spherical models, we argue that the Einstein equations reduce
to a simple form in the neighborhood of the null singularity. The main results
arising from this approach are demonstrated using an almost plane symmetric
model. The analysis shows that the null singularity results from the blueshift
of the late-time gravitational wave tail; the amplitude of these gravitational
waves is taken to decay as an inverse power of advanced time as suggested by
perturbation theory. The divergence of the Weyl curvature at the null
singularity is dominated by the propagating modes of the gravitational field.
The null singularity is weak in the sense that tidal distortion remains bounded
along timelike geodesics crossing the Cauchy horizon. These results are in
agreement with previous analyses of black hole interiors. We briefly discuss
some outstanding problems which must be resolved before the picture of the
generic black hole interior is complete.Comment: 16 pages, RevTeX, 3 figures included using psfi
Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states
We discuss an alternative to relative entropy as a measure of distance
between mixed quantum states. The proposed quantity is an extension to the
realm of quantum theory of the Jensen-Shannon divergence (JSD) between
probability distributions. The JSD has several interesting properties. It
arises in information theory and, unlike the Kullback-Leibler divergence, it is
symmetric, always well defined and bounded. We show that the quantum JSD (QJSD)
shares with the relative entropy most of the physically relevant properties, in
particular those required for a "good" quantum distinguishability measure. We
relate it to other known quantum distances and we suggest possible applications
in the field of the quantum information theory.Comment: 14 pages, corrected equation 1
- …