It was long believed that the singularity inside a realistic, rotating black
hole must be spacelike. However, studies of the internal geometry of black
holes indicate a more complicated structure is typical. While it seems likely
that an observer falling into a black hole with the collapsing star encounters
a crushing spacelike singularity, an observer falling in at late times
generally reaches a null singularity which is vastly different in character to
the standard Belinsky, Khalatnikov and Lifschitz (BKL) spacelike singularity.
In the spirit of the classic work of BKL we present an asymptotic analysis of
the null singularity inside a realistic black hole. Motivated by current
understanding of spherical models, we argue that the Einstein equations reduce
to a simple form in the neighborhood of the null singularity. The main results
arising from this approach are demonstrated using an almost plane symmetric
model. The analysis shows that the null singularity results from the blueshift
of the late-time gravitational wave tail; the amplitude of these gravitational
waves is taken to decay as an inverse power of advanced time as suggested by
perturbation theory. The divergence of the Weyl curvature at the null
singularity is dominated by the propagating modes of the gravitational field.
The null singularity is weak in the sense that tidal distortion remains bounded
along timelike geodesics crossing the Cauchy horizon. These results are in
agreement with previous analyses of black hole interiors. We briefly discuss
some outstanding problems which must be resolved before the picture of the
generic black hole interior is complete.Comment: 16 pages, RevTeX, 3 figures included using psfi