141 research outputs found

    Spin-polaron model: transport properties of EuB6_6

    Full text link
    To understand anomalous transport properties of EuB6_6, we have studied the spin-polaron Hamiltonian incorporating the electron-phonon interaction. Assuming a strong exchange interaction between the carriers and the localized spins, the electrical conductivity is calculated. The temperature and magnetic field dependence of the resistivity of EuB6_6 are well explained. At low temperature, magnons dominate the conduction process, whereas the lattice contribution becomes significant at very high temperature due to the scattering with the phonons. Large negative magnetoresistance near the ferromagnetic transition is also reproduced as observed in EuB6_6.Comment: 4 pages, 3 figures, accepted in Phys. Rev.

    Transport properties of moderately disordered UCu4_4Pd

    Full text link
    We present a detailed study on the (magneto)transport properties of as-cast and heat treated material UCu4_4Pd. We find a pronounced sample dependence of the resistivity ρ\rho of as-cast samples, and reproduce the annealing dependence of ρ\rho. In our study of the Hall effect we determine a metallic carrier density for all samples, and a temperature dependence of the Hall constant which is inconsistent with the Skew scattering prediction. The magnetoresistive response is very small and characteristic for spin disorder scattering, suggesting that overall the resistivity is controlled mostly by nonmagnetic scattering processes. We discuss possible sources for the temperature and field dependence of the transport properties, in particular with respect to quantum criticality and electronic localization effects.Comment: 11 pages, 9 figures, submitted PR

    Nature of the spin dynamics and 1/3 magnetization plateau in azurite

    Full text link
    We present a specific heat and inelastic neutron scattering study in magnetic fields up into the 1/3 magnetization plateau phase of the diamond chain compound azurite Cu3_3(CO3_3)2_2(OH)2_2. We establish that the magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a chain of S=1/2S = 1/2 monomers, which are separated by S=0S = 0 dimers on the diamond chain backbone. The effective spin couplings Jmono/kB=10.1(2)J_{mono}/k_B = 10.1(2) K and Jdimer/kB=1.8(1)J_{dimer}/k_B = 1.8(1) K are derived from the monomer and dimer dispersions. They are associated to microscopic couplings J1/kB=1(2)J_1/k_B = 1(2) K, J2/kB=55(5)J_2/k_B = 55(5) K and a ferromagnetic J3/kB=20(5)J_3/k_B = -20(5) K, possibly as result of dz2d_{z^2} orbitals in the Cu-O bonds providing the superexchange pathways.Comment: 5 pages, 4 figure

    Metallic ground state and glassy transport in single crystalline URh2_2Ge2_2: Enhancement of disorder effects in a strongly correlated electron system

    Get PDF
    We present a detailed study of the electronic transport properties on a single crystalline specimen of the moderately disordered heavy fermion system URh2_2Ge2_2. For this material, we find glassy electronic transport in a single crystalline compound. We derive the temperature dependence of the electrical conductivity and establish metallicity by means of optical conductivity and Hall effect measurements. The overall behavior of the electronic transport properties closely resembles that of metallic glasses, with at low temperatures an additional minor spin disorder contribution. We argue that this glassy electronic behavior in a crystalline compound reflects the enhancement of disorder effects as consequence of strong electronic correlations.Comment: 5 pages, 4 figures, accepted for publication in PR

    Spin glass behavior in URh_2Ge_2

    Get PDF
    URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac and dc susceptibilities, specific heat and neutron diffraction on single-crystalline as-grown URh_2Ge_2. These data clearly indicate that crystallographic disorder on a local scale produces spin glass behavior in the sample. We therefore conclude that URh_2Ge_2 is a 3D Ising-like, random-bond, heavy-fermion spin glass.Comment: 10 pages, RevTeX, with 4 postscript figures, accepted by Physical Review Letters Nov 15, 199

    Giant spin canting in the S = 1/2 antiferromagnetic chain [CuPM(NO3)2(H2O)2]n observed by 13C-NMR

    Full text link
    We present a combined experimental and theoretical study on copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet with alternating local symmetry. From the local susceptibility measured by NMR at the three inequivalent carbon sites in the pyrimidine molecule we deduce a giant spin canting, i.e., an additional staggered magnetization perpendicular to the applied external field at low temperatures. The magnitude of the transverse magnetization, the spin canting of 52 degrees at 10 K and 9.3 T and its temperature dependence are in excellent agreement with exact diagonalization calculations.Comment: 5 pages, 6 Postscript figure
    corecore