7,952 research outputs found

    Ground-State Energy and Spin Gap of Spin-1/2 Kagome Heisenberg Antiferromagnetic Clusters: Large Scale Exact Diagonalization Results

    Full text link
    We present a comprehensive list of ground state energies and spin gaps of finite kagome clusters with up to 42 spins obtained using large-scale exact diagonalization techniques. This represents the current limit of this exact approach. For a fixed number of spins N we study several cluster shapes under periodic boundary conditions in both directions resulting in a toroidal geometry. The clusters are characterized by their side length and diagonal as well as the shortest "Manhattan" diameter of the torii. A finite-size scaling analysis of the ground state energy as well as the spin gap is then performed in terms of the shortest toroidal diameter as well as the shortest "Manhattan" diameter. The structure of the spin-spin correlations further supports the importance of short loops wrapping around the torii.Comment: 4 pages, 4 figures, added one referenc

    Dissipative preparation of entanglement in optical cavities

    Full text link
    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.Comment: 4 pages, 2 figure

    Doppler cooling of calcium ions using a dipole-forbidden transition

    Full text link
    Doppler cooling of calcium ions has been experimentally demonstrated using the S1/2 to D5/2 dipole-forbidden transition. Scattering forces and fluorescence levels a factor of 5 smaller than for usual Doppler cooling on the dipole allowed S1/2 to P1/2 transition have been achieved. Since the light scattered from the ions can be monitored at (violet) wavelengths that are very different from the excitation wavelengths, single ions can be detected with an essentially zero background level. This, as well as other features of the cooling scheme, can be extremely valuable for ion trap based quantum information processing.Comment: 4 pages, 4 figures, minor changes to commentary and reference

    Multi-particle entanglement of hot trapped ions

    Full text link
    We propose an efficient method to produce multi-particle entangled states of ions in an ion trap for which a wide range of interesting effects and applications have been suggested. Our preparation scheme exploits the collective vibrational motion of the ions, but it works in such a way that this motion need not be fully controlled in the experiment. The ions may, e.g., be in thermal motion and exchange mechanical energy with a surrounding heat bath without detrimental effects on the internal state preparation. Our scheme does not require access to the individual ions in the trap.Comment: 4 pages, including 3 figures. To appear in Phys. Rev. Lett. This paper previously appeared under the name "Schrodingers cat in a hot trap". The paper has been revised according to Phys. Rev. policy on Schrodinger cats. No cats were harmed during the production of this manuscrip

    Bogoliubov theory of entanglement in a Bose-Einstein condensate

    Full text link
    We consider a Bose-Einstein condensate which is illuminated by a short resonant light pulse that coherently couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an interesting entangled state called a spin squeezed state. This evolution is analysed in detail by developing a Bogoliubov theory which describes the entanglement of the atoms. Our calculation is a consistent expansion in 1/N1/\sqrt{N}, where NN is the number of particles in the condensate, and our theory predict that it is possible to produce spin squeezing by at least a factor of 1/N1/\sqrt{N}. Within the Bogoliubov approximation this result is independent of temperature.Comment: 14 pages, including 5 figures, minor changes in the presentatio

    The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model

    Full text link
    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multi-peak structure in the energy distribution for finite lattices, usually indicative of a first order phase transition. However, this multi-peak structure is shown to disappear in the thermodynamic limit revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure

    Probing spatial spin correlations of ultracold gases by quantum noise spectroscopy

    Get PDF
    Spin noise spectroscopy with a single laser beam is demonstrated theoretically to provide a direct probe of the spatial correlations of cold fermionic gases. We show how the generic many-body phenomena of anti-bunching, pairing, antiferromagnetic, and algebraic spin liquid correlations can be revealed by measuring the spin noise as a function of laser width, temperature, and frequency.Comment: Revised version. 4 pages, 3 figures. Accepted for PR

    Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Get PDF
    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms
    • …
    corecore