7,817 research outputs found

    Nutritional value of cruciferous oilseed crops in relation to profile of accumulated biomolecules with especial regard to glucosinolates transformation products

    Get PDF
    Cruciferous oilseed crops accumulate relatively high concentrations of nutritional high quality oil and proteins in their seeds. In addition to these major seed components, their co-occurrence with high concentrations of dietary fibre (DF) and various bioactive components as glucosinolates/glucosinolate products is decisive for the nutritional value of the seed meal or products obtained from it. Depending on structural types and concentration of glucosinolates and glucosinolate derived products, these compounds can be either health beneficial or act as antinutrients. The effects of these components depend, however, strongly on the type of animal and development of the animals fed with the diets based on these compounds. Results from studies based on differently treated and processed seeds and from use of individual isolated seed components included in standard diets are evaluated and treated in relation to literature data as a basis for recommendations of acceptable concentrations of glucosinolates/glucosinolate products in animal diets. A discussion on the relation between these recommendations of acceptable concentrations in feed to different animals and those reported as necessary for plant pathogen control (biofumigation) and health beneficial effects (chemoprotection) is also included

    Processing-bioprocessing of oilseed rape in bioenergy production and value added utilization of remaining seed components

    Get PDF
    Cruciferous oilseed crops accumulate relatively high concentrations of oil, proteins and dietary fibres (DF) in their seeds, in addition to bioactive components as glucosinolates and myrosinase isoenzymes (thioglucohydrolase; EC 3.2.1.147). When mixed in the presence of moisture, myrosinase isoenzymes and associated components transform glucosinolates into various types of products, which reduces the value of the extracted oil and the remaining seed components, as well as producing unwanted environmental effects due to smell and toxicity. This gives a need for special care concerning myrosinase inactivation as the initial step during processing of oilseed rape, including technologies applied for biodiesel/bioenergy production. The myrosinase inactivation is thus a critical processing step, which needs to be performed at conditions with limited negative effects on other seed components, including proteins and glucosinolates. New bioprocessing technologies are now developed at levels that allow technology transfer from laboratory scale through pilot plant to industrial scale. The extraction of glucosinolates from the seed components remaining after oil separation-pressing and/or extraction is technically possible and has proven successful with the use of bioprocessing technologies. This is also the case concerning isolation of active myrosinases. The possibilities therefore exist for extraction and formulation of glucosinolates as “natural product derived” food and plant protection agents. With the great amounts of partly de-oiled rapeseed meal resulting from bioenergy/biodiesel production, the new bioprocessing technologies call thus for attention in relation to environmental friendly production of food (vegetable oil, protein and DF products), feed and other non food products

    Utilization of nitrogen in legume-based mobile green manures stored as compost or silage

    Get PDF
    The utilization of nitrogen (N) in green manure leys can be improved by harvesting, storage and spreading of the plant material as manure in other crops. By green manure storage as silage, storage losses of N are lower than by composting. Also, a relatively high fertilizer value of silage N is achievable depending on the C/N ratio of the material. Nitrogen availability in green manure leys is higher after storage as silage compared to composting. Use of mobile green manures is mainly relevant in arable cropping systems without livestock where utilization of the roughage for animal feed or biogas production is impossible, as costs for ley/roughage harvest and transport can be relatively high. Our study showed that surface application of green manure silage to growing crops can damage plants and is therefore not recommended, whereas incorporation of silage before sowing has significant positive effects on crop yields

    WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Get PDF
    The absolute neutrino mass scale is currently unknown, but can be constrained by cosmology. The WiggleZ high redshift, star-forming, and blue galaxy sample offers a complementary data set to previous surveys for performing these measurements, with potentially different systematics from nonlinear structure formation, redshift-space distortions, and galaxy bias. We obtain a limit of ∑m_ν<0.60  eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble parameter and the baryon acoustic oscillation scale gives ∑m_ν<0.29  eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys

    HøjvÌrdiafgrøder løser problemer

    Get PDF
    Flerürige højvÌrdiafgrøder skal levere højkvalitetsprotein og biomasse til energi og samtidig hündtere udfasning af konventionel husdyrgødning, løse ukrudtsproblemer og løfte biodiversiteten i det økologiske planteavlssÌdskifte

    The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model

    Full text link
    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multi-peak structure in the energy distribution for finite lattices, usually indicative of a first order phase transition. However, this multi-peak structure is shown to disappear in the thermodynamic limit revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure

    The primordial deuterium abundance at z = 2.504 from a high signal-to-noise spectrum of Q1009+2956

    Get PDF
    The spectrum of the zem=2.63z_{\rm em} = 2.63 quasar Q1009+2956 has been observed extensively on the Keck telescope. The Lyman limit absorption system zabs=2.504z_{\rm abs} = 2.504 was previously used to measure D/H by Burles & Tytler using a spectrum with signal to noise approximately 60 per pixel in the continuum near Ly {\alpha} at zabs=2.504z_{\rm abs} = 2.504. The larger dataset now available combines to form an exceptionally high signal to noise spectrum, around 147 per pixel. Several heavy element absorption lines are detected in this LLS, providing strong constraints on the kinematic structure. We explore a suite of absorption system models and find that the deuterium feature is likely to be contaminated by weak interloping Ly {\alpha} absorption from a low column density H I cloud, reducing the expected D/H precision. We find D/H = 2.48−0.35+0.41×10−52.48^{+0.41}_{-0.35}\times10^{-5} for this system. Combining this new measurement with others from the literature and applying the method of Least Trimmed Squares to a statistical sample of 15 D/H measurements results in a "reliable" sample of 13 values. This sample yields a primordial deuterium abundance of (D/H)p=(2.545±0.025)×10−5_{\rm p} = (2.545 \pm 0.025)\times10^{-5}. The corresponding mean baryonic density of the Universe is Ωbh2=0.02174±0.00025\Omega_{\rm b}h^2 = 0.02174\pm0.00025. The quasar absorption data is of the same precision as, and marginally inconsistent with, the 2015 CMB Planck (TT+lowP+lensing) measurement, Ωbh2=0.02226±0.00023\Omega_{\rm b}h^2 = 0.02226\pm0.00023. Further quasar and more precise nuclear data are required to establish whether this is a random fluctuation.Comment: accepted by MNRAS, 18 pages, 12 figures, 6 table

    Opto-mechanical transducers for long-distance quantum communication

    Get PDF
    We describe a new scheme to interconvert stationary and photonic qubits which is based on indirect qubit-light interactions mediated by a mechanical resonator. This approach does not rely on the specific optical response of the qubit and thereby enables optical quantum interfaces for a wide range of solid state spin and charge based systems. We discuss the implementation of quantum state transfer protocols between distant nodes of a large scale network and evaluate the effect of the main noise sources on the resulting state transfer fidelities. For the specific examples of electronic spin qubits and superconducting charge qubits we show that high fidelity quantum communication protocols can be implemented under realistic experimental conditions.Comment: Version as accepted by PR
    • …
    corecore