182 research outputs found

    Effect of IL-4 and IL-13 on IFN-γ-induced production of nitric oxide in mouse macrophages infected with herpes simplex virus type 2

    Get PDF
    AbstractInterleukin (IL)-4 and IL-13 share a wide range of activities. Prominent among these is the ability to antagonize many interferon (IFN)-γ-induced activities. Here we demonstrate that IL-4 and IL-13 totally abrogate IFN-γ-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA and protein synthesis in a murine macrophage cell line. IFN-γ-treated cells infected with herpes simplex virus type 2 (HSV-2) or costimulated with tumor necrosis factor (TNF)-α showed an enhanced reactivity, which was only partially reduced by IL-4/13. The results indicate that IL-4 and IL-13 function by intervening with a step prior to iNOS transcription by antagonizing IFN-γ-induced signal(s) without counteracting synergistic virus- or TNF-α-induced signals. The beneficial effect of a sustained NO production in foci of virus infection is suggested

    Streptococcus pneumoniae stabilizes tumor necrosis factor α mRNA through a pathway dependent on p38 MAPK but independent of Toll-like receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>is a human pathogenic bacteria and a major cause of severe invasive diseases, including pneumonia, bacteremia, and meningitis. Infections with <it>S. pneumoniae </it>evoke a strong inflammatory response, which plays a major role in the pathogenesis of pneumococcal disease.</p> <p>Results</p> <p>In this study, we have examined how <it>S. pneumoniae </it>affects expression of the inflammatory cytokine tumor necrosis factor (TNF) α, and the molecular mechanisms involved. Secretion of TNF-α was strongly induced by <it>S. pneumoniae</it>, which was able to stabilize TNF-α mRNA through a mechanism dependent on the viability of the bacteria as well as the adenylate uridylate-rich elements in the 3'untranslated region of TNF-α mRNA. The ability of <it>S. pneumoniae </it>to stabilize TNF-α mRNA was dependent on the mitogen-activated protein kinase (MAPK) p38 whereas inhibition of Toll-like receptor signaling via MyD88 did not affect <it>S. pneumoniae-</it>induced mRNA stabilization. P38 was activated through a pathway involving the upstream kinase transforming growth factor-activated kinase 1 and MAPK kinase 3.</p> <p>Conclusion</p> <p>Thus, <it>S. pneumoniae </it>stabilizes TNF-α mRNA through a pathway dependent on p38 but independent of Toll-like receptors. Production of TNF-α may contribute significantly to the inflammatory response raised during pneumococcal infection.</p

    Constitutive immune mechanisms: mediators of host defence and immune regulation

    Get PDF
    The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance

    TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain

    Get PDF
    Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies

    The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA

    Get PDF
    IL-24 (melanoma differentiation-associated gene-7 (mda-7)), a member of the IL-10 cytokine family, possesses the properties of a classical cytokine as well as tumor suppressor effects. The exact role of IL-24 in the immune system has not been defined but studies have indicated a role for IL-24 in inflammatory conditions such as psoriasis. The tumor suppressor effects of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis. Current knowledge on the regulation of IL-24 expression is sparse. Previous studies have suggested that mRNA stabilization is of major importance to IL-24 expression. Yet, the mechanisms responsible for the regulation of IL-24 mRNA stability remain unidentified. As p38 MAPK is known to regulate gene expression by interfering with mRNA degradation we examined the role of p38 MAPK in the regulation of IL-24 gene expression in cultured normal human keratinocytes.In the present study we show that anisomycin- and IL-1beta- induced IL-24 expression is strongly dependent on p38 MAPK activation. Studies of IL-24 mRNA stability in anisomycin-treated keratinocytes reveal that the p38 MAPK inhibitor SB 202190 accelerates IL-24 mRNA decay suggesting p38 MAPK to regulate IL-24 expression by mRNA-stabilizing mechanisms. The insertion of the 3' untranslated region (UTR) of IL-24 mRNA in a tet-off reporter construct induces degradation of the reporter mRNA. The observed mRNA degradation is markedly reduced when a constitutively active mutant of MAPK kinase 6 (MKK6), which selectively activates p38 MAPK, is co-expressed.Taken together, we here report p38 MAPK as a regulator of IL-24 expression and determine interference with destabilization mediated by the 3' UTR of IL-24 mRNA as mode of action. As discussed in the present work these findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine

    Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules

    Get PDF
    BACKGROUND: Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS: Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. RESULTS: Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. CONCLUSION: Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease

    ER stress induces caspase-2-tBID-GSDME-dependent cell death in neurons lytically infected with herpes simplex virus type 2

    Get PDF
    Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.</p

    The herpesviral antagonist m152 reveals differential activation of STING‐dependent IRF and NF‐κB signaling and STING's dual role during MCMV infection

    Get PDF
    Cytomegaloviruses (CMVs) are master manipulators of the host immune response. Here, we reveal that the murine CMV (MCMV) protein m152 specifically targets the type I interferon (IFN) response by binding to stimulator of interferon genes (STING), thereby delaying its trafficking to the Golgi compartment from where STING initiates type I IFN signaling. Infection with an MCMV lacking m152 induced elevated type I IFN responses and this leads to reduced viral transcript levels both in vitro and in vivo This effect is ameliorated in the absence of STING Interestingly, while m152 inhibits STING-mediated IRF signaling, it did not affect STING-mediated NF-κB signaling. Analysis of how m152 targets STING translocation reveals that STING activates NF-κB signaling already from the ER prior to its trafficking to the Golgi. Strikingly, this response is important to promote early MCMV replication. Our results show that MCMV has evolved a mechanism to specifically antagonize the STING-mediated antiviral IFN response, while preserving its pro-viral NF-κB response, providing an advantage in the establishment of an infection

    Activation and Evasion of Innate Antiviral Immunity by Herpes Simplex Virus

    Get PDF
    Herpes simplex virus (HSV), a human pathogenic virus, has evolved several strategies to evade the production and function of interferons (IFNs) and cytokines generated by the innate immune system to restrict the virus. Equilibrium exists between the virus and the immune response, and a shift in this delicate balance either restricts the virus or enhances virus spread and tissue damage. Therefore, understanding of the cytokine response generated after HSV infection and the underlying virus-cell interactions is essential to improve our understanding of viral pathogenesis. This review summarizes the current knowledge on induction and evasion of the innate immune response by HSV

    HSV-1 employs UL56 to antagonize expression and function of cGAMP channels

    Get PDF
    DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP
    corecore