64 research outputs found

    Wood Fiber from Norway Spruce—A Stand-Alone Growing Medium for Hydroponic Strawberry Production

    Get PDF
    There is an increased interest in the hydroponic production of strawberries in protected cultivation systems, and it is, therefore, urgent to develop new, more sustainable growing media alternatives. This study investigated the physical properties of wood fiber produced from Norway spruce (Picea abies (L.) H. Karst.) and peat:wood fiber substrate blends as well as the performance of the wood fiber in comparison to the industry standards, i.e., peat and coconut coir in the cultivation of hydroponic strawberry. Tray plants of the June-bearing strawberry (Fragaria × ananassa Duch.) cultivar ‘Malling Centenary’ were transplanted into five different growing media: a peat (80%) and perlite (20%) mixture, stand-alone (100%) coconut coir and three stand-alone (100%) Norway spruce wood fiber substrates (including coarse textured fibers with compact and loose packing density and compacted fine-textured fibers). Ripe strawberries were harvested and registered throughout the production season. The overall marketable yield was comparable across all the tested growing media; however, after 4 weeks of harvest, both coarse wood fiber and fine wood fiber showed better fruiting performance than the peat-perlite mixture. A trend for earlier berry maturation was observed for all wood fiber-based substrates. Plant parameters recorded after the end of production showed that plant height, number of leaves, and biomass production were higher in coarse wood fiber than in the peat-perlite mixture. Moreover, plants grown in wood fiber-based substrates had less unripe berries and flowers not harvested in comparison to both the peat and coir treatments.publishedVersio

    Environmental regulation of dormancy, flowering and runnering in two genetically distant everbearing strawberry cultivars

    Get PDF
    The environmental control of dormancy and its relation to flowering and runner formation is poorly understood in everbearing (EB) strawberry cultivars. We studied the topic by growing plants of the seed-propagated F1-hybrid ‘Delizzimo’ and the runner-propagated ‘Favori’ cultivar in daylight phytotron compartments under short day (SD) and long day (LD) conditions at temperatures of 6, 16 or 26 °C for 5 and 10 weeks. This was followed by forcing at 20 °C and 20-h photoperiod for 10 weeks with and without preceding chilling at 2 °C for 6 weeks. The results showed that dormancy in EB strawberry is regulated by a complex interaction of temperature, photoperiod and chilling in much the same way as known for seasonal flowering (SF) cultivars. Surprisingly, the EB cultivars exhibited the same SD dormancy induction response as SF cultivars, despite their opposite photoperiodic flowering requirements. However, at 26 °C the EB cultivars developed partial dormancy also under LD conditions. As known for SF cultivars, none of the EB cultivars became dormant at 6 °C regardless of daylength conditions, whereas they were increasingly sensitive to SD dormancy induction at intermediate and high temperatures. Similar to SF cultivars, the EB cultivars needed exposure to SD and relatively high temperatures for at least 10 weeks for attainment of the semi-dormant state that is typical for strawberry in general. As reported for SF cultivars, there was a close interrelation between the control of flowering, runner formation and dormancy also in the EB cultivars. ‘Favori’ had an obligatory LD requirement for flowering at 26 °C and was almost day neutral at 16 °C, while ‘Delizzimo’ behaved as a quantitative LD plant at both temperatures, and both cultivars were completely day neutral at 6 °C. Except for the stricter LD control of flowering in ‘Favori’, the overall environmental responses were quite similar in the two genetically distant cultivars. Chilling for six weeks at 2 °C was adequate for complete reversal of the constrained elongation of leaf petioles and flower trusses in dormant plants, but had little or no effect on the degree of flowering and runner formation.acceptedVersio

    Effects of temperature and photoperiod on photosynthesis in everbearing strawberry

    Get PDF
    There is little knowledge about photosynthesis in everbearing strawberry cultivars. We therefore grew three everbearing strawberry cultivars in daylight phytotron compartments at temperatures of 9, 15, 21 and 27°C and photoperiods of 10 h (SD) and 20 h (LD). After three weeks, the rates of dark respiration and photosynthesis and their acclimation were measured in 'Favouri'. Photosynthesis of plants grown in the various conditions was measured as CO2-uptake with an infrared gas analyzer at increasing irradiances (50-1000 µmol quanta m‑2 s‑1) and temperatures ranging from 9 to 27°C. In the dark, CO2-production (dark respiration) increased with increasing measuring temperature and was always largest in plants grown at low temperature (9°C) with no significant effect of photoperiod. Photosynthetic CO2-uptake was lowest at almost all irradiances in plants grown at 9°C, and with no clear effect of growth temperatures in the 15-27°C range. At saturating irradiances (500-1000 µmol), CO2-uptake increased with increasing measuring temperatures, reaching a plateau at about 21°C for plants grown at 15-27°C in SD and at 21-27°C in LD. For plants grown at 15°C in LD, the maximum CO2-uptake rate was obtained at 27°C. Light response curves showed that CO2-uptake increased with increasing irradiance and measuring temperatures and that the irradiance effect was markedly enhanced by increasing growth temperature. Maximum uptake rates were lowest for plants grown at 9°C at both photoperiods and highest for plants grown at 15°C in SD. Comparison of plants of 'Altess', 'Favouri' and 'Murano' at 500 µmol irradiance and 21°C revealed no significant differences in photosynthetic efficiency between the cultivars. Generally, the everbearing strawberry cultivars showed considerable photosynthetic plasticity to temperature within the 9-27°C range, although with an overall optimum at 15-21°C.acceptedVersio

    Flowering Phenology of Six Seasonal-Flowering Strawberry Cultivars in a Coordinated European Study

    Get PDF
    The flowering phenology of six genetically distant strawberry cultivars (‘Candonga®’ (ES), ‘Clery’ (IT), ‘Florence’ (UK), ‘Frida’ (NO), ‘Gariguette’ (FR), and ‘Sonata’ (NL)) was studied for 3 years in relation to climatic parameters in open-field cultivation at three locations (Norway, Poland, Germany) and in soil-less cultivation at two locations (Italy, and France), covering a distance of 16 degrees of latitude. This proved to be a useful approach for unravelling the climatic adaptation and plasticity of strawberry genotypes and their suitability both for profitable cultivation and as a breeding pedigree. Despite the intercorrelated character of the climatic variables, the observed results highlight the importance of global radiation as a powerful modifying phenological factor in strawberry. Generally, early flower initiation was associated with elevated temperature and global radiation. ‘Frida’ revealed the highest dependency on global radiation for flower initiation, while ‘Sonata’ was least affected by temperature and radiation. In general, temperature and global radiation in periods both preceding and following flower initiation had a stronger positive effect on the number of flowers than on crowns, especially under open-field conditions. The influence of these factors was highly variable across the cultivars: ‘Clery’, ‘Florence’, and ‘Gariguette’ were most affected, while ‘Frida’ was least influenced.publishedVersio

    Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits.

    Get PDF
    This work aims to determine the effect of genotype x environment (GxE) interaction that influence blackcurrant (Ribes nigrum) fruit quality. We applied metabolomics-driven analysis on fruits from four cultivars grown in contrasting European-locations over two seasons. By integrating metabolomics and sensory analysis, we also defined specific metabolic signatures associated with consumer acceptance. Our results showed that rainfall is a crucial factor associated with accumulation of delphinidin- and cyanidin-3-O-glucoside, the two mayor blackcurrant pigments meanwhile temperature affects the main organic acid levels which can be decisive for fruit taste. Sensorial analysis showed that increases in terpenoid and acetate ester volatiles were strongly associated with higher appreciation score, while proacacipetalin, a cyanogenic-glycoside, was positively associated to bitter taste. Our results pave the way for the selection of high-quality cultivars and suitable production sites for blackcurrant cultivation.publishedVersio

    Effect of plant type and delayed planting on growth and yield parameters of two short day strawberry (Fragaria x ananassa Duch.) cultivars in open field.

    Get PDF
    BACKGROUND: It is questioned if Norwegian nurseries can compete with the continental nursery industry in an open market. OBJECTIVE: Investigated how quality of certified Norwegian strawberry transplants, developed and yielded from planting to first cropping year. METHODS: Plant qualities of Norwegian fresh and cold stored bare root- and plug-plants of ‘Korona’ and ‘Sonata’ were examined for establishing and yield parameters in the open, after three intervals of planting. Fresh plug-plants were delivered when available. Trials were established at NIBIO Research Station Kvithamar, Norway. Growth and yield parameters were registered in the establishing and cropping years. RESULTS: Plant establishment was poor in 2013 compared with 2014. Bare-root plants stored at 2–4°C generally developed poorly. Plug-plants established well at all delivery dates, except fresh plug in one year. Development of runner plants depended on plant type, cultivar and year. Plug- and bare root-plants planted immediately after first delivery generally developed best crowns. Primary flower primordia reached a more developed stage for ‘Sonata’ than for ‘Korona’. Fruit yield of bare root was low in the establishing years. Plant-types differed in yield and fruit weight between cropping years. CONCLUSIONS: Bare-root and plug- plants planted one day after delivery generally yielded best. Storage of bare-root plants generally reduced yield. Fresh plug plants had low yield when planted late. Fruit yield of A15 and A13 in the establishing year was not satisfactory.publishedVersio

    Temperature control of shoot growth and floral initiation in apple (Malus × domestica Borkh.)

    Get PDF
    Background The environmental control of flowering in apple (Malus × domestica Borkh.) has remained an enigma for generations. Methods We studied growth and flowering effects of temperature under daylight phytotron conditions in 3-year old ‘Summerred’ and ‘Discovery’ apple trees. Flowering was assessed by dissection of buds on spurs and extension shoots at termination of treatments and flowering performance in the subsequent spring. Results Exposure to constant temperatures ranging from 12 to 27 °C for 12 weeks yielded a hyperbolic response curve with optimum at 18–21 °C and little or no flowering at 12 and 27 °C. A drop from high to low temperature after 6 weeks caused growth cessation and initiation of flowering, whereas the reverse shift had the opposite effect. Shoot growth and leaf accumulation increased with increasing temperature, but under flower-inducing conditions, both levelled off and ceased towards the end of the treatment period. Conclusions The results are discussed in relation to the extensive physiological and genetic literature on the subject. We interpret the results as two separate effects of temperature on flowering in apple. At 12 °C flowering seems to be limited by low temperature depression of growth and leaf production, while at 27 °C, flowering is blocked by inhibition of the floral initiation itself. Intermediate temperatures of 18–21 °C, on the other hand, seem to satisfy the requirements for both processes. These opposite effects of temperature have apparently confounded the understanding of the environmental control of flowering in apple.publishedVersio
    • …
    corecore