45 research outputs found

    Stabilization by Fusion to the C-terminus of Hyperthermophile Sulfolobus tokodaii RNase HI: A Possibility of Protein Stabilization Tag

    Get PDF
    RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a “stabilization tag.” The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues

    Effect of synthetic phospholipids on platelet aggregation and serotonin release.

    No full text

    Referate

    No full text

    The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins.

    No full text
    Protein II isolated from porcine intestinal epithelium is a Ca2+-modulated lipid-binding protein. The amino acid sequence of porcine protein II reported here sheds new light on the properties of a multigene protein family which includes the tyrosine kinase substrates of the sarc gene (p36) and of the EGF-receptor (p35). The sequence consolidates the structural principle in which an amino-terminal tailpiece of variable length is followed by a core built from four internally homologous segments for those proteins in the 35-40 kd range. Sequence data also show that the core can now be described as two domains each containing one low and one high homology segment. This view accounts for two Ca2+ sites, lipid aggregation and F-actin bundling--when present--and suggests that properties of the cores in which protein II differs from p36 and p35 arise primarily from segments 1 and 2. The protease-sensitive tailpiece of protein II is very short and lacks the phosphorylatable tyrosine present in the larger tail domains of p36 and p35. It harbors, however, like the p36 domain, the major site for in vitro phosphorylation by the Ca2+- and lipid-activated protein kinase C. In protein II this site is most likely threonine 6. The sequence alignment also explains why protein II does not interact with a unique p11, a property probably specific for p36. Our results further suggest that liver endonexin may reflect two protein species both closely related to protein II
    corecore