43 research outputs found

    3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering

    Get PDF
    Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects

    Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri.

    No full text
    A region of genomic DNA from Clostridium kluyveri was cloned in Escherichia coli by a screening strategy which was based on heterologous expression of the clostridial 4-hydroxybutyrate dehydrogenase gene. The gene region (6,575 bp) contained several open reading frames which encoded the coenzyme A (CoA)- and NADP+-dependent succinate-semialdehyde dehydrogenase (sucD), the 4-hydroxybutyrate dehydrogenase (4hbD), and a succinyl-CoA;CoA transferase (cat1), as analyzed by heterologous expression in E. coli. An open reading frame encoding a putative membrane protein (orfY) and the 5' region of a gene encoding a sigma 54-homologous sigma factor (sigL) were identified as well. Transcription was investigated by Northern (RNA) blot analysis. Protein sequence comparisons of SucD and 4HbD revealed similarities to the adhE (aad) gene products from E. coli and Clostridium acetobutylicum and to enzymes of the novel class (III) of alcohol dehydrogenases. A comparison of CoA-dependent aldehyde dehydrogenases is presented

    Early Immune Response in Foreign Body Reaction Is Implant/Material Specific

    No full text
    The design of novel biomaterials should directly influence the host-immune system and steer it towards high biocompatibility. To date, new implants/materials have been tested for biocompatibility in vitro in cell cultures and in vivo in animal models. The current methods do not reflect reality (cell cultures) or are very time-consuming and deliver results only after weeks (animal model). In this proof-of-concept study, the suitability of a Whole Blood Stimulation Assay (WBSA) in combination with a Protein Profiler Array (PPA), as a readily available and cost-effective screening tool, was investigated. Three different biomaterials based on poly(lactic-co-glycolic acid (PLGA), calcium sulphate/-carbonate (CS) and poly(methyl methacrylate) (PMMA) were exposed to native whole blood from three volunteers and subsequently screened with a PPA. Individual reproducible protein profiles could be detected for all three materials after 24 h of incubation. The most intense reaction resulted from the use of PLGA, followed by CS. If even marginal differences in implants can be reflected in protein profiles, the combination of WBSA and PPA could serve as an early biocompatibility screening tool in the development of novel biomaterials. This may also lead to a reduction in costs and the amount of animal testing required

    Changes in platelet-rich fibrin composition after trauma and surgical intervention

    No full text
    Reconstruction surgery after trauma has always been a big challenge. The use of platelet-rich fibrin (PRF) as an autologous source could help accelerate the regeneration time of bone and soft tissues. PRF is a blood concentrate system obtained through a one-step centrifugation. The 3D matrix of the PRF clot serves as a reservoir of growth factors. In the present study, PRF from patients after trauma and after surgery was compared to healthy volunteers to evaluate the composition and potential of PRF as a possible autologous tool for growth factor delivering. Two PRF species and blood from healthy volunteers and patients after trauma and after following surgical intervention were compared (n = 10). FACS analysis, ELISA, and histological analysis were performed. The Pro-inflammatory potential after trauma and after the intervention is increased in PRF species whereas cellular and humoral factors with distinct regenerative potential remained on a level comparable to peripheral blood. It was demonstrated that cells in PRF express more pro-inflammatory species when obtained after the surgical intervention compared to PRF from healthy individuals. This pro-inflammatory potential should be considered, when combining PRF with bone substitute materials for reconstruction surgery prone to foreign body giant cell reaction. Accordingly, solid or injectable PRF-based matrices should preferably be prepared prior to a surgical intervention

    Factors and Selenocysteine Insertion Sequence Requirements for the Synthesis of Selenoproteins from a Gram-Positive Anaerobe in Escherichia coliâ–ż

    No full text
    Selenoprotein synthesis in Escherichia coli strictly depends on the presence of a specific selenocysteine insertion sequence (SECIS) following the selenocysteine-encoding UGA codon of the respective mRNA. It is recognized by the selenocysteine-specific elongation factor SelB, leading to cotranslational insertion of selenocysteine into the nascent polypeptide chain. The synthesis of three different selenoproteins from the gram-positive anaerobe Eubacterium acidaminophilum in E. coli was studied. Incorporation of 75Se into glycine reductase protein B (GrdB1), the peroxiredoxin PrxU, and selenophosphate synthetase (SelD1) was negligible in an E. coli wild-type strain and was fully absent in an E. coli SelB mutant. Selenoprotein synthesis, however, was strongly increased if selB and selC (tRNASec) from E. acidaminophilum were coexpressed. Putative secondary structures downstream of the UGA codons did not show any sequence similarity to each other or to the E. coli SECIS element. However, mutations in these structures strongly reduced the amount of 75Se-labeled protein, indicating that they indeed act as SECIS elements. UGA readthrough mediated by the three different SECIS elements was further analyzed using gst-lacZ translational fusions. In the presence of selB and selC from E. acidaminophilum, UGA readthrough was 36 to 64% compared to the respective cysteine-encoding UGC variant. UGA readthrough of SECIS elements present in Desulfomicrobium baculatum (hydV), Treponema denticola (selD), and Campylobacter jejuni (selW-like gene) was also considerably enhanced in the presence of E. acidaminophilum selB and selC. This indicates recognition of these SECIS elements and might open new perspectives for heterologous selenoprotein synthesis in E. coli
    corecore