1,066 research outputs found
Digital pulse-shape discrimination of fast neutrons and gamma rays
Discrimination of the detection of fast neutrons and gamma rays in a liquid
scintillator detector has been investigated using digital pulse-processing
techniques. An experimental setup with a 252Cf source, a BC-501 liquid
scintillator detector, and a BaF2 detector was used to collect waveforms with a
100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase
the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis
algorithms were developed and compared to each other and to data obtained with
an analogue neutron-gamma discrimination unit. Two of the digital algorithms
were based on the charge comparison method, while the analogue unit and the
other two digital algorithms were based on the zero-crossover method. Two
different figure-of-merit parameters, which quantify the neutron-gamma
discrimination properties, were evaluated for all four digital algorithms and
for the analogue data set. All of the digital algorithms gave similar or better
figure-of-merit values than what was obtained with the analogue setup. A
detailed study of the discrimination properties as a function of sampling
frequency and bit resolution of the ADC was performed. It was shown that a
sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100
Ms/s is adequate for achieving an optimal neutron-gamma discrimination for
pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An
investigation of the influence of the sampling frequency on the time resolution
was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in
Physics Research
Identification of a millisecond isomeric state in 129Cd81 via the detection of internal conversion and Compton electrons
published_or_final_versio
Identification and rejection of scattered neutrons in AGATA
Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were
measured in an AGATA experiment performed at INFN Laboratori Nazionali di
Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors
(12 36-fold segmented high-purity germanium crystals), placed at a distance of
50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment
was to study the interaction of neutrons in the segmented high-purity germanium
detectors of AGATA and to investigate the possibility to discriminate neutrons
and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were
used for a time-of-flight measurement, which gave an independent discrimination
of neutrons and gamma rays and which was used to optimise the gamma-ray
tracking-based neutron rejection methods. It was found that standard gamma-ray
tracking, without any additional neutron rejection features, eliminates
effectively most of the interaction points due to recoiling Ge nuclei after
elastic scattering of neutrons. Standard tracking rejects also a significant
amount of the events due to inelastic scattering of neutrons in the germanium
crystals. Further enhancements of the neutron rejection was obtained by setting
conditions on the following quantities, which were evaluated for each event by
the tracking algorithm: energy of the first and second interaction point,
difference in the calculated incoming direction of the gamma ray,
figure-of-merit value. The experimental results of tracking with neutron
rejection agree rather well with Geant4 simulations
Photonuclear spectroscopy with the ELIADE array at ELI-NP
The Extreme Light Infrastructure â Nuclear Physics in BucharestMËagurele, Romania, is a major European undertaking with the aim of constructing a facility that can produce the worlds highest intensity laser beams as well as unique high-brilliance, narrow-bandwidth gamma-ray beams using laser-based inverse Compton scattering. One of the main instruments being constructed for the nuclear physics and applications with high-brilliance gamma-beams research activity is the ELIADE detector array of eight segmented HPGe clover detectors. Using the nuclear resonance fluorescence technique this setup will provide us with access to several nuclear observables like spins, parities, level widths, and branching ratios in the decay. From these observables we expect to draw conclusions about, for example, nuclear dipole response, properties of pygmy resonance and collective scissors mode excitations, parity violation in nuclear excitations, and matrix elements
for neutrinoless double-beta decay, among other topics. The uniqueness of the environment in which ELIADE will operate presents several challenges in the design and construction of the array. In this contribution we will present some of these challenges and how these challenges are overcome
Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast.
The small extracellular matrix proteoglycan decorin which possesses a potent antitumor activity has been shown to be present in various amounts in the stroma of several tumors including those of the breast. Regarding decorin in breast malignancies the published data are conflicting, i.e., whether breast cancer cells express it or not. Here, we first compared decorin gene expression levels between healthy human breast tissue and selected types of human breast cancer using GeneSapiens databank. Next, we localized decorin mRNA in tissue specimen of normal human breast, intraductal breast papillomas and various histologic types of human breast cancer using in situ hybridization (ISH) with digoxigenin-labeled RNA probes for decorin. We also examined the effect of decorin transduction on the behavior of cultured human breast cancer MCF7 cells. Analysis of GeneSapiens databank revealed that in various human breast cancers decorin expression is significant. However, ISH results clearly demonstrated that human breast cancer cells independently of the type of the cancer do not express decorin mRNA. This was also true for papilloma-forming cells of the human breast. Indeed, decorin gene expression in healthy human breast tissue as well as in benign and malignant tumors of human breast was shown to take place solely in cells of the original stroma. Decorin transduction using decorin adenoviral vector in decorin-negative MCF7 cells resulted in a significant decrease in the proliferation of these cells and changed cell cohesion. Decorin-transduced MCF7 cells also exhibited increased apoptosis. In conclusion, our study shows that in human breast tissue only cells of the original stroma are capable of decorin gene expression. Our study also shows that transduction of decorin in decorin-negative human breast cancer cells markedly modulates the growth pattern of these cells
- âŠ