13 research outputs found
Data-Driven Reachability Analysis of Pedestrians Using Behavior Modes
In this paper, we present a data-driven approach for safely predicting the
future state sets of pedestrians. Previous approaches to predicting the future
state sets of pedestrians either do not provide safety guarantees or are overly
conservative. Moreover, an additional challenge is the selection or
identification of a model that sufficiently captures the motion of pedestrians.
To address these issues, this paper introduces the idea of splitting previously
collected, historical pedestrian trajectories into different behavior modes for
performing data-driven reachability analysis. Through this proposed approach,
we are able to use data-driven reachability analysis to capture the future
state sets of pedestrians, while being less conservative and still maintaining
safety guarantees. Furthermore, this approach is modular and can support
different approaches for behavior splitting. To illustrate the efficacy of the
approach, we implement our method with a basic behavior-splitting module and
evaluate the implementation on an open-source data set of real pedestrian
trajectories. In this evaluation, we find that the modal reachable sets are
less conservative and more descriptive of the future state sets of the
pedestrian
Datadriven NÄbarhetsanalys av FotgÀngare som AnvÀnder BeteendelÀgen : Reducerar Konservativiteten i Datadriven FotgÀngarpredicering Genom att Integrera Deras Beteende
Predicting the future state occupancies of pedestrians in urban scenarios is a challenging task, especially considering that conventional methods need an explicit model of the system, hence introducing data-driven reachability analysis. Data-driven reachability analysis uses data, inherently produced by an unknown system, to perform future state predictions using sets, generally represented by zonotopes. These predicted sets are generally more conservative than model-based reachable sets. Therefore, is it possible to cluster previously recorded trajectory data based on the expressed behavior and perform the predictions on each cluster to still be able to provide safety guarantees? The theory behind data-driven reachability analysis, which can handle input noise and model uncertainties and still provide safety guarantees, is quite recent. This means that previous implementations for predicting pedestrians are theoretically probabilistic and would not be appropriate to implement in actual systems. Thus, this thesis is not the first of its kind in predicting the future reachable sets for pedestrians using clustered behavioral data, but it is the first work that provides safety guarantees in the process. The method proposed in this thesis first labels the historically recorded trajectories into the behavior also referred to as mode, the pedestrian expressed, which is done by simple conditional statements. This is done offline. However, this implementation is designed to be modular enabling easier improvements to the labelling system. Then, the reachable sets are computed for each behavior separately, which enables a potential motion planner to decide on which modal sets are relevant for specific scenarios. Theoretically, this method provides safety guarantees. The outcomes of this method were more descriptive reachable sets, meaning that the predicted areas intersected areas that it reasonably should, and did not intersect areas it reasonably should not. Also, the volume of the zonotopes for the modal sets was observed to be smaller than the volume of the implemented baseline, indicating fewer over-approximations and less conservative predictions. These results enable more efficient path planning for Connected and Autonomous Vehicles (CAVs), thus reducing fuel consumption and brake wear.Att predicera framtida tillstÄnd för fotgÀngare i urbana situationer Àr en utmaning, speciellt med tanke pÄ att konventionella metoder behöver uttryckligen en modell av systemet, dÀrav introduceringen av datadriven nÄbarhetsanalys. Datadriven nÄbarhetsanalys anvÀnder data, naturligt producerad av ett okÀnt system, för att genomföra framtida tillstÄndspredicering med hjÀlp av matematiska set, generellt representerade av zonotoper. Dessa predicerade sets Àr generellt sett mode konservativa Àn modellbaserade nÄbara set. DÀrmed, Àr det möjligt att dela upp historiskt inspelade banor baserat pÄ det uttryckta beteendet och genomföra prediceringar pÄ varje kluster och bibehÄlla sÀkerhetsgarantier? Teorin bakom datadriven nÄbarhetsanalys, som kan hantera brus i indatat och modellosÀkerheter och bibehÄlla sÀkerhetsgarantier, Àr vÀldigt ny. Detta betyder att tidigare implementationer för att predicera fotgÀngare Àr, teoretiskt sett, probabilistiska och Àr inte lÀmpliga att implementera i riktiga system. DÀrmed, detta examensarbete Àr inte det första som predicerar framtida nÄbara set för fotgÀngare genom att anvÀnda kluster för beteendedatat, men den Àr det första arbetet som bibehÄller sÀkerhetsgarantier i processen. Den introducerade metoden i detta examensarbete rubricerar först de tidigare inspelade banorna baserat pÄ beteendet, Àven kallat lÀget, som fotgÀngaren uttrycker, vilket Àr gjort genom simpla betingade pÄstÄenden. Detta görs offline. Dock, denna implementation Àr designad till att vara modulÀr vilket underlÀttar förbÀttringar till rubriceringssystemet. FortsÀttningsvis, berÀknas de nÄbara seten för varje beteende separat, vilket möjliggör att en potentiell rörelseplanerare kan avgöra vilka beteendeset som Àr relevanta för specifika scenarion. Teoretiskt sett sÄ ger denna metod sÀkerhetsgarantier. Resultaten frÄn denna metod var först och frÀmst mer beskrivande nÄbara set, vilket betyder att de predicerade omrÄdena korsar omrÄden som de rimligtvis ska korsa, och inte korsar omrÄde som de rimligen inte ska korsa. Dessutom, volymen pÄ zonotoperna for beteendeseten observerades att vara mindre Àn volymen för baslinjeseten, vilket indikerar lÀgre överskattningar och mindre konservativa prediceringar. Dessa resultat möjliggör mer effektiv rörelseplanering för uppkopplade och autonoma fordon, vilket reducerar brÀnsleförbrukningen och bromsslitage
Datadriven NÄbarhetsanalys av FotgÀngare som AnvÀnder BeteendelÀgen : Reducerar Konservativiteten i Datadriven FotgÀngarpredicering Genom att Integrera Deras Beteende
Predicting the future state occupancies of pedestrians in urban scenarios is a challenging task, especially considering that conventional methods need an explicit model of the system, hence introducing data-driven reachability analysis. Data-driven reachability analysis uses data, inherently produced by an unknown system, to perform future state predictions using sets, generally represented by zonotopes. These predicted sets are generally more conservative than model-based reachable sets. Therefore, is it possible to cluster previously recorded trajectory data based on the expressed behavior and perform the predictions on each cluster to still be able to provide safety guarantees? The theory behind data-driven reachability analysis, which can handle input noise and model uncertainties and still provide safety guarantees, is quite recent. This means that previous implementations for predicting pedestrians are theoretically probabilistic and would not be appropriate to implement in actual systems. Thus, this thesis is not the first of its kind in predicting the future reachable sets for pedestrians using clustered behavioral data, but it is the first work that provides safety guarantees in the process. The method proposed in this thesis first labels the historically recorded trajectories into the behavior also referred to as mode, the pedestrian expressed, which is done by simple conditional statements. This is done offline. However, this implementation is designed to be modular enabling easier improvements to the labelling system. Then, the reachable sets are computed for each behavior separately, which enables a potential motion planner to decide on which modal sets are relevant for specific scenarios. Theoretically, this method provides safety guarantees. The outcomes of this method were more descriptive reachable sets, meaning that the predicted areas intersected areas that it reasonably should, and did not intersect areas it reasonably should not. Also, the volume of the zonotopes for the modal sets was observed to be smaller than the volume of the implemented baseline, indicating fewer over-approximations and less conservative predictions. These results enable more efficient path planning for Connected and Autonomous Vehicles (CAVs), thus reducing fuel consumption and brake wear.Att predicera framtida tillstÄnd för fotgÀngare i urbana situationer Àr en utmaning, speciellt med tanke pÄ att konventionella metoder behöver uttryckligen en modell av systemet, dÀrav introduceringen av datadriven nÄbarhetsanalys. Datadriven nÄbarhetsanalys anvÀnder data, naturligt producerad av ett okÀnt system, för att genomföra framtida tillstÄndspredicering med hjÀlp av matematiska set, generellt representerade av zonotoper. Dessa predicerade sets Àr generellt sett mode konservativa Àn modellbaserade nÄbara set. DÀrmed, Àr det möjligt att dela upp historiskt inspelade banor baserat pÄ det uttryckta beteendet och genomföra prediceringar pÄ varje kluster och bibehÄlla sÀkerhetsgarantier? Teorin bakom datadriven nÄbarhetsanalys, som kan hantera brus i indatat och modellosÀkerheter och bibehÄlla sÀkerhetsgarantier, Àr vÀldigt ny. Detta betyder att tidigare implementationer för att predicera fotgÀngare Àr, teoretiskt sett, probabilistiska och Àr inte lÀmpliga att implementera i riktiga system. DÀrmed, detta examensarbete Àr inte det första som predicerar framtida nÄbara set för fotgÀngare genom att anvÀnda kluster för beteendedatat, men den Àr det första arbetet som bibehÄller sÀkerhetsgarantier i processen. Den introducerade metoden i detta examensarbete rubricerar först de tidigare inspelade banorna baserat pÄ beteendet, Àven kallat lÀget, som fotgÀngaren uttrycker, vilket Àr gjort genom simpla betingade pÄstÄenden. Detta görs offline. Dock, denna implementation Àr designad till att vara modulÀr vilket underlÀttar förbÀttringar till rubriceringssystemet. FortsÀttningsvis, berÀknas de nÄbara seten för varje beteende separat, vilket möjliggör att en potentiell rörelseplanerare kan avgöra vilka beteendeset som Àr relevanta för specifika scenarion. Teoretiskt sett sÄ ger denna metod sÀkerhetsgarantier. Resultaten frÄn denna metod var först och frÀmst mer beskrivande nÄbara set, vilket betyder att de predicerade omrÄdena korsar omrÄden som de rimligtvis ska korsa, och inte korsar omrÄde som de rimligen inte ska korsa. Dessutom, volymen pÄ zonotoperna for beteendeseten observerades att vara mindre Àn volymen för baslinjeseten, vilket indikerar lÀgre överskattningar och mindre konservativa prediceringar. Dessa resultat möjliggör mer effektiv rörelseplanering för uppkopplade och autonoma fordon, vilket reducerar brÀnsleförbrukningen och bromsslitage
VÀrdet av kompetensutveckling : En analys av SATS GETIN-utbildning med fokus pÄ dess kompetensmÄl och ekonomiska pÄverkan
Att mĂ€ta och vĂ€rdera kompetensutveckling pĂ„ företag blir en allt vanligare företeelse Ă€ven om det fortfarande inte Ă€r allmĂ€nt vedertaget. SATS Sports Club AB Ă€r ett företag pĂ„ den Skandinaviska trĂ€ningsmarknaden. Det Ă€r ett utbildningsorienterat företag men gör sjĂ€lv inte nĂ„gon uppföljning pĂ„ sina utbildningar. I det hĂ€r arbetet har vi kartlagt en utbildning pĂ„ SATS (GETIN-utbildningen). Vi har definierat kompetensmĂ„let med utbildning, vilket sorts vĂ€rde som detta mĂ„l bidrar med och vilka affĂ€rsmĂ„l som pĂ„verkas av detta. VĂ„rt syfte Ă€r att ge SATS en inblick i hur de kan arbeta med kompetensmĂ€tning i sin organisation. Vi Ă€mnar Ă€ven lĂ€gga grunden för en fullstĂ€ndig kompetensmĂ€tning av SATS GETIN-utbildning. Vi har kommit fram till att kompetensmĂ„let med GETIN-utbildningen Ă€r âatt öka de nyanstĂ€lldas servicekvalitet och förbĂ€ttra deras kundbemötande.â. Vi kommer ocksĂ„ fram till att utbildningen leder till ekonomisk vinst för SATS. De viktigaste affĂ€rsmĂ„len som pĂ„verkas av utbildningen anser vi vara ökad kundretention, ökad personalretention samt nya kunder via rekommendationer
Practice makes perfect? : En studie av praktikens betydelse för anstÀllningsbarhet
Abstract The aim of this study is to examine and analyze the advantages and limitations of practicum at the HR-program at Uppsala university in the years of 1986-1995 through summarized practicum reports, while focusing on learning in relation to academically based employability. This approach is used to further understand the influence practicum has on employability in relation to the three objectives of higher education. The three objectives are; the usefulness-, competitive- and literate perspective.  The study partly contains an account of the students own experiences and thoughts regarding the practicum as well as a summary and an analysis of the content of said practicum in relation to the education and academically based employability. The research questions of this study seeks to answer the motives and background of the practicum and also the benefits and limitations that comes with it. The data of this study consist of individual summary reports that the students have made in connection to the semester in which the practicum took place. The summaries contain some of the tasks that the students performed but also an account of the students own thoughts and experiences of their practicum.  Method: The data collection method consists of qualitative content analysis and a semi-structured interview.  The results show that the students believe that the practicum has contributed to improve their own employability by providing better capabilities and a deeper understanding of their professional field. The results of the study also show that a big part of the practicum has involved informal learning as well as adaptive- and development learning which has contributed to the development of the students. The conclusion is that the practicum has been important to the students as it has contributed to their personal development and also improved their employability
Practice makes perfect? : En studie av praktikens betydelse för anstÀllningsbarhet
Abstract The aim of this study is to examine and analyze the advantages and limitations of practicum at the HR-program at Uppsala university in the years of 1986-1995 through summarized practicum reports, while focusing on learning in relation to academically based employability. This approach is used to further understand the influence practicum has on employability in relation to the three objectives of higher education. The three objectives are; the usefulness-, competitive- and literate perspective.  The study partly contains an account of the students own experiences and thoughts regarding the practicum as well as a summary and an analysis of the content of said practicum in relation to the education and academically based employability. The research questions of this study seeks to answer the motives and background of the practicum and also the benefits and limitations that comes with it. The data of this study consist of individual summary reports that the students have made in connection to the semester in which the practicum took place. The summaries contain some of the tasks that the students performed but also an account of the students own thoughts and experiences of their practicum.  Method: The data collection method consists of qualitative content analysis and a semi-structured interview.  The results show that the students believe that the practicum has contributed to improve their own employability by providing better capabilities and a deeper understanding of their professional field. The results of the study also show that a big part of the practicum has involved informal learning as well as adaptive- and development learning which has contributed to the development of the students. The conclusion is that the practicum has been important to the students as it has contributed to their personal development and also improved their employability
Deep Reinforcement Learning for the Popular Game tag
Reinforcement learning can be compared to howhumans learn â by interaction, which is the fundamental conceptof this project. This paper aims to compare three differentlearning methods by creating two adversarial reinforcementlearning models and simulate them in the game tag. The threefundamental learning methods are ordinary Q-learning, Deep Qlearning(DQN), and Double Deep Q-learning (DDQN).The models for ordinary Q-learning are built using a table andthe models for both DQN and DDQN are constructed by using aPython module called TensorFlow. The environment is composedof a bounded square with two obstacles and two agents withadversarial objectives. The rewards are given primarily basedon the distance between the agents.By comparing the trained models it was established that onlyDDQN could solve the task well and generalize, whilst both theQ-model and DQN had more serious flaws. A comparison ofthe DDQN model against its average reward trends establishedthat the model still improved regardless of the constant averagereward.Conclusively, DDQN is the appropriate choice for this adversarialproblem whilst Q-learning and DQN should be avoided.Finally, a constant average reward can be caused by bothagents improving at a similar rate rather than a stagnation inperformance.FörstĂ€rkande inlĂ€rning kan jĂ€mföras medsĂ€ttet vi mĂ€nniskor lĂ€r oss, genom interaktion, vilket Ă€r denfundamentala idĂ©en med detta projekt. Syftet med denna rapportĂ€r att jĂ€mföra tre olika inlĂ€rningsmetoder genom att skapatvĂ„ förstĂ€rkande motstĂ„ndarinlĂ€rningsagenter och simulera demi spelet kull. De tre fundamentala inlĂ€rningsmetoderna Ă€r Qlearning,Deep Q-learning (DQN) och Double Deep Q-learning(DDQN).Modellerna för vanlig Q-learning Ă€r konstruerade med hjĂ€lpav en tabell och modellerna för bĂ„de DQN och DDQN Ă€r byggdamed en Python modul, TensorFlow. Miljön Ă€r uppbyggd av enbegrĂ€nsad kvadrat med tvĂ„ hinder och tvĂ„ agenter med motsattamĂ„l. Belöningarna ges baserat pĂ„ avstĂ„ndet mellan agenterna.En jĂ€mförelse mellan de trĂ€nade modelerna visade pĂ„ attenbart DDQN kunde spela bra och generalisera sig, medan bĂ„deQ-modellen och DQN-modellen hade mer allvarliga problem.Genom en jĂ€mförelse för DDQN-modellerna och deras genomsnittligabelöning visade det sig att DDQN-modellen fortfarandeförbĂ€ttrade sig, oavsett det konstanta genomsnittet.Sammanfattningsvis, DDQN Ă€r det bĂ€st lĂ€mpade valet fördenna motpart simulering medan vanlig Q-learning och DQNborde undvikas. Slutligen, ett konstant belöningsgenomsnitt orsakasav att agenterna förbĂ€ttras i samma takt snarare Ă€n attde stagnerar i prestanda.Kandidatexjobb i elektroteknik 2021, KTH, Stockhol
VÀrdet av kompetensutveckling : En mÀtning av SATS GETIN-utbildning med fokus pÄ reaktioner, kunskapsintag och överförda kompetenser
Kompetensutveckling anvĂ€nds mer och mer av företag i dagens samhĂ€lle. Det Ă€r dock fortfarande relativt ovanligt med utvĂ€rderingar av utbildningar. SATS Ă€r ett exempel pĂ„ ett företag som arbetar med utbildning men inte har haft resurser/kunskap att göra uppföljningar pĂ„ sin kompetensutveckling. Denna magisteruppsats kommer studera SATS GETIN-utbildning. Utbildningen skall genomföras av alla anstĂ€llda pĂ„ SATS och syftar till att introducera personalen till SATS vĂ€rderingar, arbetsrutiner, historia med mera. Syftet Ă€r att mĂ€ta reaktionerna pĂ„, kunskapsintaget och beteendeförĂ€ndringen hos deltagarna pĂ„ SATS GETIN-utbildning till följd av utbildningen. Vidare syftar uppsatsen till att besvara vilka orsakssamband som finns mellan de olika stegen i utvĂ€rderingen. För att besvara syftet har empiriska mĂ€tningar genomförts i tre steg under och efter utbildningsdagen i frĂ„ga. MĂ€tningarna har bestĂ„tt av en kursutvĂ€rdering, tvĂ„ kunskapstest och en uppföljningsenkĂ€t med syfte att undersöka beteendeförĂ€ndring till följd av utbildningen. Ăverlag var reaktionerna pĂ„ GETIN-utbildningen vĂ€ldigt positiva och en stor kunskapsökning skedde hos utbildningsdeltagarna. BeteendeenkĂ€ten visade att deltagarna ansĂ„g att de framförallt ökat sin förmĂ„ga att ge trĂ€ningsrĂ„dgivning och bemöta kunder. BeteendeförĂ€ndringen var dock inte sĂ„ stor som vĂ€ntad. De ansĂ„g att den viktigaste faktorn som pĂ„verkat deras kompetensökning var deras egen vilja att förbĂ€ttras.Competency development is increasingly used by companies in today's society. However, it is still relatively uncommon in training evaluations. SATS is an example of a company putting emphasis on staff education but has not had the resources / knowledge to evaluate it afterwards. This master thesis will study the SATS GETIN education. The training will be implemented by all employees of SATS and aims to introduce staff to the SATS values, work practices, history and more.The purpose of the following essay is to measure the reactions to, the change in knowledge intake and behavioral changes in the daily work of training participants of the SATS GETIN-education. Furthermore, the paper seeks to answer the causal link between the various stages of evaluation. In order to answer the purpose of the study empirical measurements have been carried out in three stages during and after the training day in question. The measurements consisted of a course evaluation, two knowledge tests and a follow-up survey with the aim to investigate the behavior change as a result of the training. Overall, the reactions to the GETIN-education were very positive and a significant knowledge increase occurred among training participants. The behavior survey showed that participants felt that they mainly increased their capacity to give fitness advice and respond to customers. Behavior change was not as great as expected. The participants considered the main factor that influenced their skills-increase was their own desire to improve
Deep Reinforcement Learning for the Popular Game tag
Reinforcement learning can be compared to howhumans learn â by interaction, which is the fundamental conceptof this project. This paper aims to compare three differentlearning methods by creating two adversarial reinforcementlearning models and simulate them in the game tag. The threefundamental learning methods are ordinary Q-learning, Deep Qlearning(DQN), and Double Deep Q-learning (DDQN).The models for ordinary Q-learning are built using a table andthe models for both DQN and DDQN are constructed by using aPython module called TensorFlow. The environment is composedof a bounded square with two obstacles and two agents withadversarial objectives. The rewards are given primarily basedon the distance between the agents.By comparing the trained models it was established that onlyDDQN could solve the task well and generalize, whilst both theQ-model and DQN had more serious flaws. A comparison ofthe DDQN model against its average reward trends establishedthat the model still improved regardless of the constant averagereward.Conclusively, DDQN is the appropriate choice for this adversarialproblem whilst Q-learning and DQN should be avoided.Finally, a constant average reward can be caused by bothagents improving at a similar rate rather than a stagnation inperformance.FörstĂ€rkande inlĂ€rning kan jĂ€mföras medsĂ€ttet vi mĂ€nniskor lĂ€r oss, genom interaktion, vilket Ă€r denfundamentala idĂ©en med detta projekt. Syftet med denna rapportĂ€r att jĂ€mföra tre olika inlĂ€rningsmetoder genom att skapatvĂ„ förstĂ€rkande motstĂ„ndarinlĂ€rningsagenter och simulera demi spelet kull. De tre fundamentala inlĂ€rningsmetoderna Ă€r Qlearning,Deep Q-learning (DQN) och Double Deep Q-learning(DDQN).Modellerna för vanlig Q-learning Ă€r konstruerade med hjĂ€lpav en tabell och modellerna för bĂ„de DQN och DDQN Ă€r byggdamed en Python modul, TensorFlow. Miljön Ă€r uppbyggd av enbegrĂ€nsad kvadrat med tvĂ„ hinder och tvĂ„ agenter med motsattamĂ„l. Belöningarna ges baserat pĂ„ avstĂ„ndet mellan agenterna.En jĂ€mförelse mellan de trĂ€nade modelerna visade pĂ„ attenbart DDQN kunde spela bra och generalisera sig, medan bĂ„deQ-modellen och DQN-modellen hade mer allvarliga problem.Genom en jĂ€mförelse för DDQN-modellerna och deras genomsnittligabelöning visade det sig att DDQN-modellen fortfarandeförbĂ€ttrade sig, oavsett det konstanta genomsnittet.Sammanfattningsvis, DDQN Ă€r det bĂ€st lĂ€mpade valet fördenna motpart simulering medan vanlig Q-learning och DQNborde undvikas. Slutligen, ett konstant belöningsgenomsnitt orsakasav att agenterna förbĂ€ttras i samma takt snarare Ă€n attde stagnerar i prestanda.Kandidatexjobb i elektroteknik 2021, KTH, Stockhol