387 research outputs found
Cluster Perturbation Theory for Hubbard models
Cluster perturbation theory is a technique for calculating the spectral
weight of Hubbard models of strongly correlated electrons, which combines exact
diagonalizations on small clusters with strong-coupling perturbation theory at
leading order. It is exact in both the strong- and weak-coupling limits and
provides a good approximation to the spectral function at any wavevector.
Following the paper by S\'en\'echal et al. (Phys. Rev. Lett. {\bf 84}, 522
(2000)), we provide a more complete description and derivation of the method.
We illustrate some of its capabilities, in particular regarding the effect of
doping, the calculation of ground state energy and double occupancy, the
disappearance of the Fermi surface in the Hubbard model, and so on. The
method is applicable to any model with on-site repulsion only.Comment: 11 pages, 10 figures (RevTeX 4
Spectral functions for strongly correlated 5f-electrons
We calculate the spectral functions of model systems describing 5f-compounds
adopting Cluster Perturbation Theory. The method allows for an accurate
treatment of the short-range correlations. The calculated excitation spectra
exhibit coherent 5f bands coexisting with features associated with local
intra-atomic transitions. The findings provide a microscopic basis for partial
localization. Results are presented for linear chains.Comment: 10 Page
Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon
Seismic waves propagating in a porous medium, under favourable conditions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical studies, that these so-called ‘seismoelectromagnetic' couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid-filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimental data to an effective fluid model. We have built a 1-m-length-scale experiment designed for imbibition and drainage of an homogeneous silica sand; the experimental set-up includes a seismic source, accelerometers, electric dipoles and capacitance probes in order to monitor seismic and seismoelectric fields during water saturation. Apparent velocities and frequency spectra (in the kiloHertz range) are derived from seismic and electrical measurements during experiments in varying saturation conditions. Amplitudes of seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by continuous wavelet transform. The experiments reveal that amplitude ratios of seismic to coseismic electric signals remain rather constant as a function of the water saturation in the Sw=[0.2-0.9] range, consistently with theoretically predicted transfer function
Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer: generation of α-aminoalkyl radicals.
addresses: School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UKEX4 4QD. [email protected]: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2010 Royal Society of ChemistryThe extent to which deuterium can act as a protecting group to prevent unwanted 1,5-hydrogen atom transfer to aryl and vinyl radical intermediates was examined in the context of the generation of α-aminoalkyl radicals in a pyrrolidine ring. Intra- and intermolecular radical trapping following hydrogen atom transfer provides an illustration of the use of the primary kinetic isotope effect in directing the outcome of synthetic C-C bond-forming processes
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model
The ground states of the two-dimensional repulsive Hubbard model are studied
within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge
properties are determined by systematic, large-scale, exact numerical
calculations, and quantified as a function of electron doping . In the
solution of the self-consistent UHF equations, multiple initial configurations
and simulated annealing are used to facilitate convergence to the global
minimum. New approaches are employed to minimize finite-size effects in order
to reach the thermodynamic limit. At low to moderate interacting strengths and
low doping, the UHF ground state is a linear spin-density wave (l-SDW), with
antiferromagnetic order and a modulating wave. The wavelength of the modulating
wave is . Corresponding charge order exists but is substantially weaker
than the spin order, hence holes are mobile. As the interaction is increased,
the l-SDW states evolves into several different phases, with the holes
eventually becoming localized. A simple pairing model is presented with
analytic calculations for low interaction strength and small doping, to help
understand the numerical results and provide a physical picture for the
properties of the SDW ground state. By comparison with recent many-body
calculations, it is shown that, for intermediate interactions, the UHF solution
provides a good description of the magnetic correlations in the true ground
state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table
Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.
In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs
- …