27 research outputs found

    Prospecting movements link phenotypic traits to female annual potential fitness in a nocturnal predator.

    Get PDF
    Recent biologging technology reveals hidden life and breeding strategies of nocturnal animals. Combining animal movement patterns with individual characteristics and landscape features can uncover meaningful behaviours that directly influence fitness. Consequently, defining the proximate mechanisms and adaptive value of the identified behaviours is of paramount importance. Breeding female barn owls (Tyto alba), a colour-polymorphic species, recurrently visit other nest boxes at night. We described and quantified this behaviour for the first time, linking it with possible drivers, and individual fitness. We GPS-equipped 178 female barn owls and 122 male partners from 2016 to 2020 in western Switzerland during the chick rearing phase. We observed that 111 (65%) of the tracked breeding females were (re)visiting nest boxes while still carrying out their first brood. We modelled their prospecting parameters as a function of brood-, individual- and partner-related variables and found that female feather eumelanism predicted the emergence of prospecting behaviour (less melanic females are usually prospecting). More importantly we found that increasing male parental investment (e.g., feeding rate) increased female prospecting efforts. Ultimately, females would (re)visit a nest more often if they had used it in the past and were more likely to lay a second clutch afterwards, consequently having higher annual fecundity than non-prospecting females. Despite these apparent immediate benefits, they did not fledge more chicks. Through biologging and long-term field monitoring, we highlight how phenotypic traits (melanism and parental investment) can be related to movement patterns and the annual potential reproductive output (fecundity) of female barn owls

    Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl.

    Get PDF
    Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes

    Hot Very Small dust Grains in NGC 1068 seen in jet induced structures thanks to VLT/NACO adaptive optics

    Get PDF
    We present K, L and M diffraction-limited images of NGC 1068 obtained with NAOS+CONICA at VLT/YEPUN over a 3.5" field around the central engine. Hot dust (Tcol = 550-650 K) is found in three different regions : (a) in the true nucleus, seen as a slightly NS elongated, core of extremely hot dust, "resolved" in K and L with respective diameters of ~5 pc and 8.5 pc ; (b) along the NS direction, as a "spiral arm" and a southern tongue ; (c) as a set of parallel elongated nodules ("wave-like") bracketting the jet. Several structures observed on radio maps, mid-IR or HST UV-visible maps are seen, so that a precise registration can be done from UV to 6 cm. These results do support the current interpretion that source (a) corresponds to emission from dust near sublimation temperature delimiting the walls of the cavity in the central obscuring torus. Structure (b) is thought to be a mixture of hot dust and active star forming regions along a micro spiral structure that could trace the tidal mechanism bringing matter to the central engine. Structure c)which was not known, exhibits too high a temperature for "classical'' grains ; it is most probably the signature of transiently heated very small dust grains (VSG) : "nano-diamonds", which are resistant and can form in strong UV field or in shocks, are very attractive candidates. The "waves'' can be condensations triggered by jet induced shocks, as predicted by recent models. First estimates, based on a simple VSG model and on a detailed radiative transfer model, do agree with those interpretations, both qualitatively and quantitatively.Comment: Submitted : 15 March 2003 ; accepted : 15 May 200

    Climate‐driven convergent evolution of plumage colour in a cosmopolitan bird

    No full text
    Aim The investigation of phenotypic diversity across geographical gradients is pivotal to understanding the evolution and adaptive functions of alternative phenotypes. The aim of the present study was to investigate whether the polymorphism in ventral plumage colouration observed in the cosmopolitan common barn owl group is determined by climatic factors, such as temperature and rainfall, consistent with Gloger's and Bogert's biogeographical rules. Location World. Time period 1809-2017. Major taxa studied Tyto alba species complex. Methods We analysed the variation in heritable melanin-based plumage colour according to annual temperature and rainfall in 9,110 individuals of the cosmopolitan barn owl, with three distinct evolutionary lineages representing its entire distribution range: the Afro-European Tyto alba, occurring between Scandinavia and South Africa, the American Tyto furcata, found from southern Canada to Patagonia, and the Australasian Tyto javanica, living between the Himalayan Plateau and Tasmania. Results Although the geographical distribution of colour morphs is heterogeneous among the lineages, in all of them plumage colour becomes darker with increasing annual rainfall, indicating a convergent selection of darker morphs in humid habitats possibly to improve camouflage against the dark environment and/or to repel water more efficiently. Moreover, in T. alba and T. furcata, melanization increases at decreasing temperature, suggesting its possible role in thermoregulation. Discussion These findings provide convincing evidence of repeated evolution of similar body colouration patterns at a worldwide scale compatible with the main biogeographical rules, while emphasizing the possible role of melanin-based traits in animal adaptation to climate change

    Influence of prey availability on habitat selection during the non-breeding period in a resident bird of prey.

    No full text
    For resident birds of prey in the temperate zone, the cold non-breeding period can have strong impacts on survival and reproduction with implications for population dynamics. Therefore, the non-breeding period should receive the same attention as other parts of the annual life cycle. Birds of prey in intensively managed agricultural areas are repeatedly confronted with unpredictable, rapid changes in their habitat due to agricultural practices such as mowing, harvesting, and ploughing. Such a dynamic landscape likely affects prey distribution and availability and may even result in changes in habitat selection of the predator throughout the annual cycle. In the present study, we (1) quantified barn owl prey availability in different habitats across the annual cycle, (2) quantified the size and location of barn owl breeding and non-breeding home ranges using GPS-data, (3) assessed habitat selection in relation to prey availability during the non-breeding period, and (4) discussed differences in habitat selection during the non-breeding period to habitat selection during the breeding period. The patchier prey distribution during the non-breeding period compared to the breeding period led to habitat selection towards grassland during the non-breeding period. The size of barn owl home ranges during breeding and non-breeding were similar, but there was a small shift in home range location which was more pronounced in females than males. The changes in prey availability led to a mainly grassland-oriented habitat selection during the non-breeding period. Further, our results showed the importance of biodiversity promotion areas and undisturbed field margins within the intensively managed agricultural landscape. We showed that different prey availability in habitat categories can lead to changes in habitat preference between the breeding and the non-breeding period. Given these results we show how important it is to maintain and enhance structural diversity in intensive agricultural landscapes, to effectively protect birds of prey specialised on small mammals

    Determination of the polyfructosan sinistrin in biological fluids by HPLC with electrochemical detection.

    No full text
    A sensitive HPLC method with electrochemical detection was developed for the determination of the polyfructosan sinistrin in human plasma and urine. Proteins and interfering components such as glucose were removed from plasma and urine samples by solid phase extraction on C18 cartridges. Chromatographic separations were achieved at 85 degrees C on a 300 mm x 7.8 mm i.d. column, using ion moderated partition chromatography with distilled water at a flow rate of 0.6 ml min-1. After post-column addition of NaOH 0.3 M (0.6 ml min-1), the electrochemical detection of the eluate was performed with a sequence of three potentials (0.05 V, -0.8 V, 0.6 V) of specific pulse duration 300, 100 and 100 ms respectively. Xylose was used as internal standard for the quantitative determinations. The calibration curves were linear (r2 > 0.992) over the working range 5-300 micrograms ml-1. This method has been characterized, validated and applied successfully in a study comparing two modes of glomerular filtration rate determination in healthy volunteers (bolus vs. constant rate infusion of sinistrin)

    Home range size and habitat quality affect breeding success but not parental investment in barn owl males.

    No full text
    Life-history theory predicts that parents should balance their limited resources to maximize lifetime fitness, limiting their investment in current reproduction when the fitness value of current progeny is lower than that gained by producing offspring in the future. Here, we examined whether male barn owls (Tyto alba) breeding in low-quality habitats increased their parental effort to successfully complete offspring rearing or limited their investment by paying a fitness cost while saving energy for the future. We equipped 128 males with GPS devices between 2016 and 2020 to collect information on home range size, habitat composition, food provisioning rate to the brood and nightly distances covered. We also recorded nestlings' growth and survival, as well as males' body mass variation and future reproductive success. Males living in lower-quality habitats exploited bigger home ranges compared to individuals whose nests were settled in prey-rich habitats. They fed their brood less frequently, while covering longer nightly distance, resulting in a slower growth of late-hatched nestlings and ultimately in a lower fledging success. As males did not differ in body mass variation or future reproductive success our findings suggest that males hunting in home ranges with less prey-rich structures do not jeopardize future reproduction by investing disproportionately larger resources to compensate for their current low home range quality
    corecore