77 research outputs found

    A Római Egyetemi Magyar Tanszék 85 éve

    Get PDF
    The History of the Hungarian Chair at the University of Rome. The first Chair of Hungarian Literature and Language in Italy was established at the University of Rome La Sapienza in 1930. At first, the chairmen of the position were the professional directors of the Hungarian Academy in Rome. Between the two world wars Hungarian was also taught in Bologna, Firenze, Milano, Napoli and Padova. Since 1965 in Padova and in Rome Hungarian visiting professors were teaching: in Rome János Balázs, József Szauder and Tibor Klaniczay academics, afterwards Péter Sárközy from 1979 to 2015. At the University of Rome has been founded in 1985 the Interuniversity Centre for Hungarian Studies, which publishes the „Rivista di Studi Ungheresi” (Hungarian Studies Review).Hungarian Literature and Language are taught nowadays in Italy at universities of Bologna, Firenze, Napoli, Padova, Roma and Udine

    Dante-fordítások és Isteni Színjáték-kommentárok Szász Károlytól máig

    Get PDF

    Beyond Homopolymer Errors: a Systematic Investigation of Nanopore-based DNA Sequencing Characteristics Using HLA-DQA2

    Get PDF
    Electronic, nanopore based single molecule real-time DNA sequencing technology offers very long, albeit lower accuracy reads in sharp contrast to existing next-generation sequencing methods, which offer short, high-accuracy reads in abundance. We provide a systematic review of the error characteristics of this new sequencing platform, and demonstrate the most challenging aspects in the field of whole gene sequencing through the human HLA-DQA2 gene using long-range PCR products on multiplexed samples. We consider the limitations of these errors for the applications of this technology, and also indicate prospective improvements and expected thresholds with respect to these errors

    Multivariate Analysis of Dopaminergic Gene Variants asRisk Factors of Heroin Dependence

    Get PDF
    Background: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. Objective: To study the potential association between allelic variants of dopamine D2 receptor (DRD2), ANKK1 (ankyrin repeat and kinase domain containing 1), dopamine D4 receptor (DRD4), catechol-O-methyl transferase (COMT) and dopamine transporter (SLC6A3) genes and heroin dependence in Hungarian patients. Methods: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs) rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs) were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA). Findings and conclusions: In single marker analysis the TaqIA (rs1800497) and TaqIB (rs1079597) variants were associated with heroin dependence. Moreover, –521 C/T SNP (rs1800955) of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A) allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462) of the DRD4 gene and this effect is mediated through the –521 C/T (rs1800955) polymorphism in the promoter

    Preconditioning protects the heart in a prolonged uremic condition

    Get PDF
    Metabolic diseases such as hyperlipidemia and diabetes attenuate the cardioprotective effect of ischemic preconditioning. In the present study, we examined whether another metabolic disease, prolonged uremia, affects ischemia/reperfusion injury and cardioprotection by ischemic preconditioning. Uremia was induced by partial nephrectomy in male Wistar rats. The development of uremia was verified 29 wk after surgery. Transthoracic echocardiography was performed to monitor cardiac function. At week 30, hearts of nephrectomized and sham-operated rats were isolated and subjected to a 30-min coronary occlusion followed by 120 min reperfusion with or without preceding preconditioning induced by three intermittent cycles of brief ischemia and reperfusion. In nephrectomized rats, plasma uric acid, carbamide, and creatinine as well as urine protein levels were increased as compared with sham-operated controls. Systolic anterior and septal wall thicknesses were increased in nephrectomized rats, suggesting the development of a minimal cardiac hypertrophy. Ejection fraction was decreased and isovolumic relaxation time was shortened in nephrectomized rats demonstrating a mild systolic and diastolic dysfunction. Infarct size was not affected significantly by nephrectomy itself. Ischemic preconditioning significantly decreased infarct size from 24.8 ± 5.2% to 6.6 ± 1.3% in the sham-operated group and also in the uremic group from 35.4 ± 9.5% to 11.9 ± 3.1% of the area at risk. Plasma ANG II and nitrotyrosine were significantly increased in the uremic rats. We conclude that although prolonged experimental uremia leads to severe metabolic changes and the development of a mild myocardial dysfunction, the cardioprotective effect of ischemic preconditioning is still preserved

    Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats

    Get PDF
    Background: Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome. Methods: Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR. Results: Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e. g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e. g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin 18. Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by metabolic syndrome. Conclusions: Metabolic syndrome significantly alters cardiac gene expression profile which may be involved in development of cardiac pathologies in the presence of metabolic syndrome
    corecore