67,902 research outputs found
Desarrollo de una app para el diagnóstico diferencial de pacientes con Parkinson y temblor esencial
Este trabajo tiene cómo objetivo desarrollar una aplicación móvil para ayudar en el diagnóstico diferencial entre pacientes con Parkinson y pacientes con Temblor Esencial Estos son los sÃndromes de temblor más comunes en todo el mundo Para lograr esto, se desarrollaron modelos de Machine Learning a partir de diferentes caracterÃsticas cinemáticas de las señales de la velocidad angular del temblor de mano de sujetos sanos y pacientes con temblor usando el giroscopio de un teléfono móvil Los modelos desarrollados se implementaron en un servidor web y una aplicación móvil para hacer el registro, el procesamiento y la clasificación de las señales de velocidad angular El modelo implementado para diferenciar sujetos con temblor patológico de sujetos con temblor fisiológicos mostró un 97 06 de sensibilidad y un 100 de especificidad Por otro lado, el modelo implementado para diferenciar entre los dos sÃndromes de temblor mostró un 95 00 de sensibilidad y un 100 de especificidad Con esto, se presume que esta aplicación le servirá de apoyo a los médicos especialistas que tratan patologÃas y trastornos del movimiento a realizar diagnósticos tempranosPostprint (published version
Optical sensor to measure the projectile velocity
Displays & Photonics Applications Group (GDAF), belonging to Electronics Technology Department of University Carlos III of Madrid (Spain), has designed and implemented a simple, cost-effective, and robust optoelectronic system to measure online the average velocity of a projectile. This system is able to measure velocities ranged between 100m/s and 1200m/s). Potential applications are focused on experimental impact tests on aircraft and spacecraft structures. We are seeking potential collaborations with international/national research centres and enterprises to extent the range of potential applications
Computational medical imaging for total knee arthroplasty using visualitzation toolkit
This project is presented as a Master Thesis in the field of Civil Engineering, Biomedical specialization. As the
project of an Erasmus exchange student, this thesis has been under supervision both the Universite Livre de
Bruxelles and the Universitat Politecnica de Catalunya. The purpose of this thesis to put in practice all the
knowledges acquired during this Master in Industrial Engineering in UPC and to be a support for medical staff
in total knee arthoplasty procedures.
Prof. Emmanuel Thienpont has been working for years as orthopaedic surgeon at the Hospital Sant Luc,
Brussels. His years of work and research have been mainly focused on Total Knee Arthroplasty or TKA. During
one of the most important steps of this procedure, the orthopaedic surgeon has to cut the head of the femur
following two perpendicular cutting planes. Nevertheless, the orientation of these planes are directly dependant
of the femur constitution.
This Master Thesis has been conceived in order to offer the surgeon a tool to determine the proper direction
planes in a previous step before the surgical procedure. This project pretends to give the surgeon an openfree
computational platform to access to patient geometrical and physiological information before involving the
subject in any invasive procedure
Geodesic connectedness and conjugate points in GRW spacetimes
Given two points of a Generalized Robertson-Walker spacetime, the existence,
multiplicity and causal character of geodesic connecting them is characterized.
Conjugate points of such geodesics are related to conjugate points of geodesics
on the fiber, and Morse-type relations are obtained. Applications to
bidimensional spacetimes and to GRW spacetimes satisfying the timelike
convergence condition are also found.Comment: 31 pages and 2 figure
Multiple Scattering Formulation of Two Dimensional Acoustic and Electromagnetic Metamaterials
This work presents a multiple scattering formulation of two dimensional
acoustic metamaterials. It is shown that in the low frequency limit multiple
scattering allows us to define frequency-dependent effective acoustic
parameters for arrays of both ordered and disordered cylinders. This
formulation can lead to both positive and negative acoustic parameters, where
the acoustic parameters are the scalar bulk modulus and the tensorial mass
density and, therefore, anisotropic wave propagation is allowed with both
positive or negative refraction index. It is also shown that the surface fields
on the scatterer are the main responsible of the anomalous behavior of the
effective medium, therefore complex scatterers can be used to engineer the
frequency response of the effective medium, and some examples of application to
different scatterers are given. Finally, the theory is extended to
electromagnetic wave propagation, where Mie resonances are found to be the
responsible of the metamaterial behavior. As an application, it is shown that
it is possible to obtain metamaterials with negative permeability and
permittivity tensors by arrays of all-dielectric cylinders and that anisotropic
cylinders can tune the frequency response of these resonances
- …