8,415 research outputs found

    Census of HII regions in NGC 6754 derived with MUSE: Constraints on the metal mixing scale

    Get PDF
    We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.Comment: 13 pages, 7 Figurs, accepted for publishing in A&

    Resonance phenomena of a solitonlike extended object in a bistable potential

    Full text link
    We investigate the dynamics of a soliton that behaves as an extended particle. The soliton motion in an effective bistable potential can be chaotic in a similar way as the Duffing oscillator. We generalize the concept of geometrical resonance to spatiotemporal systems and apply it to design a nonfeedback mechanism of chaos control using localized perturbations.We show the existence of solitonic stochastic resonance.Comment: 3 postscript figure

    A comparative study between wmms and tls for the stability analysis of the San Pedro church barrel vault by means of the finite element method

    Get PDF
    Stability of masonry constructions is highly conditioned by the geometric disposition of its elements due to its low tensile strength and great compressive mechanical properties. Under this framework, this paper attempts to evaluate the suitability of a wearable mobile mapping solution, equipped in a backpack and based on the well-known simultaneous location and mapping paradigm, for the structural diagnosis of historical constructions. To evaluate the suitability of this device, the structural analysis obtained is compared with a high precision terrestrial laser scanner, which is considered as ground truth. The Romanesque church of San Pedro (Becerril del Carpio, Spain) was selected as a study case. This construction, initially conceived in the XIIIth century, has experimented in the past a soil settlement promoting the leaning of the north wall, several plastic hinges in its barrel vault and a visible geometrical deformation. The comparison of both techniques was carried out at different levels: i) an evaluation of the time needed to obtain the point cloud of the church; ii) an accuracy assessment based on the comparison of a terrestrial network using artificial spheres as checkpoints and; iii) an evaluation of the discrepancies, in terms of safety factor and collapse topology, found during the advance numerical evaluation of the barrel vault by means of the finite element method. This comparison places this wearable mobile mapping solution as an interesting tool for the creation of advanced numerical simulations to evaluate the structural stability of historical constructionsJunta de Castilla y León | Ref. SA075P17FEDER | Ref. SOE1/P5/P025

    Influence of the reactants rotational excitation on the H + D2(v = 0, j) reactivity

    Get PDF
    10 págs.; 10 figs.; 1 tab.; Special Issue: Dynamics of Molecular Collisions XXV: Fifty Years of Chemical Reaction DynamicsWe have analyzed the influence of the rotational excitation on the H + D(v = 0, j) reaction through quantum mechanical (QM) and quasiclassical trajectories (QCT) calculations at a wide range of total energies. The agreement between both types of calculations is excellent. We have found that the rotational excitation largely increases the reactivity at large values of the total energy. Such an increase cannot be attributed to a stereodynamical effect but to the existence of recrossing trajectories that become reactive as the target molecule gets rotationally excited. At low total energies, however, recrossing is not significant and the reactivity evolution is dominated by changes in the collision energy; the reactivity decreases with the collision energy as it shrinks the acceptance cone. When state-to-state results are considered, rotational excitation leads to cold products rovibrational distributions, so that most of the energy is released as recoil energy.The authors acknowledge funding by the Spanish Ministry of Science and Innovation (grant Consolider Ingenio 2010 CSD2009-00038). J.A., F.J.A. and P.G.J. acknowledge also funding by the Spanish Ministry of Economy and Competitiveness (grant CTQ2012-37404-C02), and V.J.H. acknowledges additional funding by the Spanish Ministry of Science and Innovation (FIS2013-48087-C2-1P) and by the European Research Council (ERC-2013-Syg-610256).Peer Reviewe

    Rotational state-changing collisions of C2H− and C2N− anions with He under interstellar and cold ion trap conditions: A computational comparison

    Get PDF
    We present an extensive range of quantum calculations for the state-changing rotational dynamics involving two simple molecular anions that are expected to play some role in the evolutionary analysis of chemical networks in the interstellar environments, C2H− (X1Σ+) and C2N− (X3Σ−), but for which inelastic rates are only known for C2H−. The same systems are also of direct interest in modeling selective photo-detachment experiments in cold ion traps where the He atoms function as the chief buffer gas at the low trap temperatures. This study employs accurate, ab initio calculations of the interaction potential energy surfaces for these anions, treated as rigid rotors, and the He atom to obtain a wide range of state-changing quantum cross sections and rates at temperatures up to about 100 K. The results are analyzed and compared for the two systems to show differences and similarities between their rates of state-changing dynamics

    Uncertainty quantification and predictability of wind speed over the Iberian Peninsula

    Get PDF
    During recent decades, the use of probabilistic forecasting methods has increased markedly. However, these predictions still need improvement in uncertainty quantification and predictability analysis. For this reason, the main aim of this paper is to develop tools for quantifying uncertainty and predictability of wind speed over the Iberian Peninsula. To achieve this goal, several spread indexes extracted from an ensemble prediction system are defined in this paper. Subsequently, these indexes were evaluated with the aim of selecting the most appropriate for the characterization of uncertainty associated to the forecasting. Selection is based on comparison of the average magnitude of ensemble spread (ES) and mean absolute percentage error (MAPE). MAPE is estimated by comparing the ensemble mean with wind speed values from different databases. Later, correlation between MAPE and ES was evaluated. Furthermore, probability distribution functions (PDFs) of spread indexes are analyzed to select the index with greater similarity to MAPE PDFs. Then, the spread index selected as optimal is used to carry out a spatiotemporal analysis of model uncertainty in wind forecasting. The results indicate that mountainous regions and the Mediterranean coast are characterized by strong uncertainty, and the spread increases more rapidly in areas affected by strong winds. Finally, a predictability index is proposed for obtaining a tool capable of providing information on whether the predictability is higher or lower than average. The applications developed may be useful in the forecasting of wind potential several days in advance, with substantial importance for estimating wind energy production

    Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures

    Get PDF
    The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the lower (25 nm) region, the Bi content decays exponentially from an initial maximum value, while the upper region comprises an almost constant Bi content until the end of the layer. Secondly, despite the relatively low Bi content, CuPtB-type ordering was observed both in electron diffraction patterns and in fast Fourier transform reconstructions from high-resolution transmission electron microscopy images. The estimation of the long-range ordering parameter and the development of ordering maps by using geometrical phase algorithms indicate a direct connection between the solubility of Bi and the amount of ordering. The occurrence of both phase separation and atomic ordering has a significant effect on the optical properties of these layers

    Integrability in Theories with Local U(1) Gauge Symmetry

    Get PDF
    Using a recently developed method, based on a generalization of the zero curvature representation of Zakharov and Shabat, we study the integrability structure in the Abelian Higgs model. It is shown that the model contains integrable sectors, where integrability is understood as the existence of infinitely many conserved currents. In particular, a gauge invariant description of the weak and strong integrable sectors is provided. The pertinent integrability conditions are given by a U(1) generalization of the standard strong and weak constraints for models with two dimensional target space. The Bogomolny sector is discussed, as well, and we find that each Bogomolny configuration supports infinitely many conserved currents. Finally, other models with U(1) gauge symmetry are investigated.Comment: corrected typos, version accepted in J. Phys.
    corecore