40 research outputs found

    Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record

    Get PDF
    Abrupt changes in Western Mediterranean climate during the last deglaciation (20 to 6 cal ka BP) are detected in marine core MD95-2043 (Alboran Sea) through the investigation of high-resolution pollen data and pollen-based climate reconstructions by the modern analogue technique (MAT) for annual precipitation (Pann) and mean temperatures of the coldest and warmest months (MTCO and MTWA). Changes in temperate Mediterranean forest development and composition and MAT reconstructions indicate major climatic shifts with parallel temperature and precipitation changes at the onsets of Heinrich stadial 1 (equivalent to the Oldest Dryas), the Bölling-Allerød (BA), and the Younger Dryas (YD). Multi-centennial-scale oscillations in forest development occurred throughout the BA, YD, and early Holocene. Shifts in vegetation composition and (Pann reconstructions indicate that forest declines occurred during dry, and generally cool, episodes centred at 14.0, 13.3, 12.9, 11.8, 10.7, 10.1, 9.2, 8.3 and 7.4 cal ka BP. The forest record also suggests multiple, low-amplitude Preboreal (PB) climate oscillations, and a marked increase in moisture availability for forest development at the end of the PB at 10.6 cal ka BP. Dry atmospheric conditions in the Western Mediterranean occurred in phase with Lateglacial events of high-latitude cooling including GI-1d (Older Dryas), GI-1b (Intra-Allerød Cold Period) and GS-1 (YD), and during Holocene events associated with high-latitude cooling, meltwater pulses and N. Atlantic ice-rafting. A possible climatic mechanism for the recurrence of dry intervals and an opposed regional precipitation pattern with respect to Western-central Europe relates to the dynamics of the westerlies and the prevalence of atmospheric blocking highs. Comparison of radiocarbon and ice-core ages for well-defined climatic transitions in the forest record suggests possible enhancement of marine reservoir ages in the Alboran Sea by 200 years (surface water age 600 years) during the Lateglacial

    Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3

    No full text
    EuroCLIMATE project RESOLuTIONInternational audienceAbstract Dinoflagellate cyst (dinocyst) analysis was conducted on two cores from the SW Iberian margin and central Alboran Sea from which high quality records of Marine Isotope Stage 3 have been previously derived. Our aim in this study is to compare the dinocyst signature between 50 and 25 ka BP with existing datasets of foraminiferal and geochemical proxies related to hydrological parameters. Quantitative reconstructions of sea-surface temperatures (SSTs) and salinities (SSS) based on dinocysts are performed for the first time in this area. The results are compared to SSTs derived from planktonic foraminifera and alkenone measurements, and to SSS calculated from planktonic δ18O and foraminiferal SST. Significant oscillations related to Dansgaard-Oeschger cycles are recorded in both cores. Dinocyst-derived hydrological parameters exhibit synchronous fluctuations and similar values to those derived from the other methods, in particular when considering quantitative reconstructions for February based on foraminifera and dinocysts. Our study shows that the influence of subpolar waters was felt during each Greenland Stadial (GS) off Portugal, and that the amplification of the Heinrich Stadial cooling in the Alboran Sea was related to the penetration of subpolar waters through the Strait of Gibraltar. During Greenland Interstadials (GI), we provide evidence for the occurrence of warm and nutrient-rich sea-surface waters in the Alboran Sea, probably due to gyre-induced upwelling. Finally, the difference between August and February dinocyst SST estimates suggests higher seasonal contrasts during GS compared to GI at the two core sites. Additionally, precession appears to have an imprint on dinocyst-derived long-term seasonality record. However, this observation needs to be confirmed by longer records. Research Highlights ► We provide new dinocyst data on core MD95-2043 (Alboran Sea) during MIS 3. ► Quantitative dinocyst sea-surface parameters (SST, SSS) are reconstructed. ► A multi-proxies compilation (microfossils, alkenones, isotopes) is established. ► This dataset has been compared with the one of a SW Iberian margin core. ► Millennial-scale climatic variability is perfectly apparent from each side of Gibraltar
    corecore