2,607 research outputs found

    Capacitive Coupling of Two Transmission Line Resonators Mediated by the Phonon Number of a Nanoelectromechanical Oscillator

    Full text link
    Detection of quantum features in mechanical systems at the nanoscale constitutes a challenging task, given the weak interaction with other elements and the available technics. Here we describe how the interaction between two monomodal transmission-line resonators (TLRs) mediated by vibrations of a nano-electromechanical oscillator can be described. This scheme is then employed for quantum non-demolition detection of the number of phonons in the nano-electromechanical oscillator through a direct current measurement in the output of one of the TLRs. For that to be possible an undepleted field inside one of the TLR works as a amplifier for the interaction between the mechanical resonator and the remaining TLR. We also show how how the non-classical nature of this system can be used for generation of tripartite entanglement and conditioned mechanical coherent superposition states, which may be further explored for detection processes.Comment: 6 pages, 5 figure

    Chaotic dynamics in billiards using Bohm’s quantum mechanics

    Get PDF
    The dynamics of a particle in square and circular billiards is studied within the framework of Bohm’s quantum mechanics. While conventional quantum mechanics predicts that the system shows no indication of chaotic behavior for these geometries from either the eigenvalue spectra distribution or the structure of the eigenfunctions, we find that in Bohm’s quantum mechanics these systems exhibit both regular and chaotic behavior, depending on the form of the initial wave packet and on the particle’s initial position

    Comment on “Inelastic Collapse of a Randomly Forced Particle” by Cornell et al.

    Get PDF
    A Comment on the Letter by Stephen J. Cornell, Michael R. Swift, and Alan J. Bray, Phys. Rev. Lett. 81, 1142 (1998). The authors of the Letter offer a Reply

    Quantum chaos in a double square-well: An approach based on Bohm\u27s view of quantum mechanics

    Get PDF
    We study the dynamics of a quantum particle in a double square-well potential within a deterministic framework using Bohm’s quantum mechanics. Phase portraits, Fourier spectral analysis, Poincaré sections, and Lyapunov exponents clearly indicate that the particle undergoes periodic, quasiperiodic, and chaotic motions depending on the initial form of the wave packet. We also make a detailed comparison between the predictions of the present approach and those of conventional quantum mechanics for the same problem

    Redesign of machine component in polymeric matrix composite towards increased productivity

    Get PDF
    This work is focused in the maximization of the acceleration a 2D Industrial Laser Cutting Machine (ILCM). The changes to be implemented are centered in the replacement of a metallic critical component: the gantry. This component largely influences precision and maximum acceleration. Finite Elements Analysis was performed to the current metallic part. From this analysis the maximum allowed deformations were established. A replacement composite component capable of an equally valid behavior was designed in carbon fiber. To establish the maximum increase in acceleration that does not lead to precision losses, the working conditions were simulated and the acceleration to which the component was subjected to was varied. The variation of the thickness of layers with different orientations and locations in the part allowed for the understanding of how the mass varies along with the maximum possible acceleration. This analysis, asides with considering the maximum force allowed by the linear motor that is responsible by the gantry motion, establishes the limit in terms of maximum acceleration of the machine. An increase of 22% in the maximum acceleration while maintaining the precision is possible due to the higher specific rigidity of composite materials and the use of an optimization heuristic

    Potentialities of two solventless extraction approaches—Stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines

    Get PDF
    A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time

    Redesign of an industrial laser cutting machine’s gantry in composite material

    Get PDF
    This work is focused in the design stage of a composite structure intended to replace a metallic critical component in a 2D Industrial Laser Cutting Machine (ILCM). The component is the gantry, largely responsible for most of the ILCM’s characteristics. These include precision and maximum acceleration, which are critical. The dimensioning of the component is initially performed based on analytical models, but latter stages use the numerical capabilities of Finite Elements Method. In the end it is possible to take advantage of the higher specific rigidity of composite materials to increase the maximum acceleration that the machine allows for while maintaining the precision.(undefined

    Dynamic FE model updating using particle swarm optimization method: A methodology to design critical mechanical composite structures

    Get PDF
    To increase the performance of an industrial cutting machine, this work studied the possibility of replacing its current main steel gantry by a Carbon Fibre Reinforced Polymer (CFRP) composite solution. This component strongly influences the most relevant characteristics of the equipment, namely accuracy and maxima allowed accelerations. The flexibility of composites in terms of number, thickness and orientation of layers and the challenging trade-offs between weight and stiffness motivated the development of an optimisation process. The Particle Swarm Optimisation method (PSO) was used to develop a solution able to ensure higher accelerations and the required accuracy of the equipment, by optimizing continuously the FE model algorithm input and output assessment and updating it. The process resulted in a near optimal solution allowing a 43% weight reduction and an increase of the maximum allowed acceleration in 25%, while ensuring the same accuracy.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and the scholarship SFRH/BD/51106/2010
    corecore