View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Portland

University of Portland
Pilot Scholars

Physics Faculty Publications and Presentations Physics

11-1998

Quantum chaos in a double square-well: An
approach based on Bohm's view of quantum
mechanics

O.F de Alcantara Bonfim
University of Portland, bonfim@up.edu

J. Florencio

E C. S4 Barreto

Follow this and additional works at: http://pilotscholars.up.edu/phy facpubs
& Dart of the Quantum Physics Commons

Citation: Pilot Scholars Version (Modified MLA Style)

Bonfim, O. F. de Alcantara; Florencio, J.; and S4 Barreto, F. C., "Quantum chaos in a double square-well: An approach based on Bohm's
view of quantum mechanics" (1998). Physics Faculty Publications and Presentations. 21.
http://pilotscholars.up.edu/phy_facpubs/21

This Journal Article is brought to you for free and open access by the Physics at Pilot Scholars. It has been accepted for inclusion in Physics Faculty

Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.


https://core.ac.uk/display/232742148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/phy_facpubs?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/phy?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/phy_facpubs?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/phy_facpubs/21?utm_source=pilotscholars.up.edu%2Fphy_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Quantum chaos in a double square well: An approach based on Bohm'’s view
of quantum mechanics

O. F. de Alcantara Bonfim
Department of Physics, Reed College, Portland, Oregon 97202

J. Florencio and F. C. SRarreto
Departamento de Bica, Universidade Federal de Minas Gerais, 30.161-970 Belo Horizonte, MG, Brazil

(Received 30 April 1998

We study the dynamics of a quantum particle in a double square-well potential within a deterministic
framework using Bohm’s quantum mechanics. Phase portraits, Fourier spectral analysis, Reictoams, and
Lyapunov exponents clearly indicate that the particle undergoes periodic, quasiperiodic, and chaotic motions
depending on the initial form of the wave packet. We also make a detailed comparison between the predictions
of the present approach and those of conventional quantum mechanics for the same problem.
[S1063-651%98)03411-4

PACS numbgs): 05.45:+b, 03.65.Bz, 03.65.Ge

Quantum chaos is an area of much research activity ifiound to spread rapidly over regions where the potential is
spite of a lack of consensus about its very meaning, definisignificantly nonlineaf8], or the wave function develops a
tion, or even its observability. Because of the lack of a direchighly complex pattern in the chaotic regif@l. In spite of
correspondence between classical trajectories in phase spabese attempts, finding unambiguous fingerprints of quantum
and the observables in conventional quantum mechanics, tlehaos is still very much an open problem. In any event, the
characterization of chaos in the latter is quite controversialfield of quantum chaos is usually restricted to the study of
As we know, classical chaotic behavior is usually defined byquantum systems whose classical limits are chaotic.
the unique property of a nonlinear system which under cer- An alternate way to deal with quantum dynamics is by
tain conditions becomes highly sensitive to its initial condi-using the so-called quantum theory of moti@iTM), which
tions. When a system is in the chaotic state, initially neigh-was proposed some time ago by Bofi0] (and similarly by
boring phase-space trajectories will separate exponentially ate Broglie[11,12) but that only recently has gained some
the system evolves in time. This definition, however, seemattention[13—15. Bohm's theory gives exactly the same re-
to be inadequate to study chaos in quantum systems sincestilts as conventional quantum mechanics, yet it goes one
presumes that the trajectory of a particle is a well-definedstep ahead of the Schtimger equation insofar as making
guantity. Hence, the conventional interpretation of quantunprecise statements about the actual trajectories of a single
mechanics is not appropriate to describe quantum chaos thparticle (Bohm'’s postulate Hence, QTM seems to be a
same way we do in classical mechanics. more appropriate framework for investigating quantum

A variety of methods have been proposed to identify thechaos. Actually, Bohm and Hiley were the first to put forth
criteria by which a quantum system is chadtic-3]. One the idea of applying QTM to quantum chaos, namely in the
such method is to study the evolution of the mean values gproblem of a single particle confined in a two-dimensional
the operators and the structure of the energy spectrum. THeox [13]. About the same time, Holland 5] also suggested
energy levels have been found to have different statisticathat the concepts of chaos from classical physics could be
distribution when the corresponding classical system is chaextended to the particle trajectories of Bohm’s mechanics.
otic (Wigner statistics or regular(Poisson statistigs[2,3]. In this work we use Bohm'’s theory to investigate the dy-
Although the energy level spacing statistics of a variety ofnamics of a particle in a double square-well potential, that is,
guantum systems that are chaotic when treated classically asesquare barrier embedded in an infinite well. In a recent
described by Wigner statistics, it was found recefdlythat  paper, Parmenter and Valentirjé6] argued that a one-
two systems, namely, the hydrogen atom in magnetic fieldlimensional quantum system could not exhibit chaos within
and a two-dimensional quartic oscillator, which are chaotiche QTM framework. We find that a one-dimensional system
classically, have in the quantum regime an energy level spacan indeed exhibit chaotic behavior, in contrast to Parmenter
ing distribution drastically different from the expected and Valentine's assertions. To our knowledge, ours is the
Wigner distribution. It has also been conjectuf&fithat the first application of Bohm'’s mechanics to the study of quan-
distribution of the fluctuations of the spectral density oftum chaos in a one-dimensional system. We believe this is
states of a quantum system must be Gaussian if the corredso the first comparison between the predictions of QTM
sponding classical counterpart is strongly chaotic, or nonand conventional quantum mechanics about the chaotic be-
Gaussian if the classical system is integrable. Another aphavior of a quantum system.
proach to detect the presence of quantum chaos is to assumeThe chaotic behavior of a particle in the double-well po-
that its signature can be inferred directly from the behaviottential was discussed recently by Ashkenatal. [6] and
of the wave functior6,7]. For instance, the wave packet of also by Berkovitset al. [7] within the context of conven-
the quantum counterpart of a classical chaotic system wasonal quantum mechanics. Ashkenaglyal. found that the
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time evolution of an initially Gaussian wave packet in a 2.0 . . .
double square-well potential shows a complex behavior. This
was believed to be induced by tunneling through the barrier 10 L ]

since such complex behavior for the wave packet was not

observed in the absence of the barrier. Such a behavior was

then interpreted as a signature of quantum chaos. On the

other hand, Berkovitst al.[7] tackled the same problem by

analyzing the distribution of energy levels about the top of 1.0

the barrier. They found that the distribution of energies

slightly above the barrier is closer to Wigner statistics than

for other values of energy, thus indicating that the system is 2%00 200 o0 20.0 20.0

chaotic for energies just above the barrier level. One should X

note that in the work of Ashkenazgt al, all the energy

levels included in their Gaussian packet are below the height FIG. 1. Phase-space portrait for a quantum particle trapped in a

of the barrier. double square-well potential. The system of units is such that
According to QTM' a Sing|e quantum-mechanica| 0bject=2|\/| =1 and the Iength unit is the barrier half-wickh The initial

Cons|sts Of a partlcle of massa enveloped |n a phys|ca”y pOSition WaSX0=3.O and the wave function a&=0 was given by

real field (the i field) which guides the particle according to #(x.0)=Us () ius (x). The system is periodic with period

the guidance formulaEg. (1) below. The field satisfies the =27/ and angular frequency =(E; —E;)/%.

time-dependent Schdinger equation TDSE), and the par-

V oot 1

the problem of a particle confined to a double square-well
mv=VS, (1) potential. In order to make such comparison, we use the

same parameters as those in Rg6s7], namely the barrier
whereS(x,t) is the phase of the wave function. For a given half-width a=1 and the half-width of the well =55. In all
external potentiaV(x), the trajectory of a particle and the oyr calculations we have assumieg 2m= 1. For the barrier
time evolution of its dynamical variables are determinednheight, however, we tak&=0.1 in order to enhance the
once its initial  field and its initial position are given. The tynneling probability.

phaseS(x,t) of the wave function satisfies the nonlinear dif- | all cases discussed below, we use a linear combination

ferential equation of the first few states with energy less than the barrier energy
sS  (V9)? as the initial wave function. Let, (x) andu,, (x) denote the
= +V+Q=0, (2)  even and odd eigenfunctions for the double square-well po-
at 2m tential with eigenvalueg, andE, , respectively. The posi-

where Q= — (/2/2m)V2RIR is the so-called quantum po- tion of the patrticle is determined by simultaneous integration

tential andR is the amplitude of the wave function. Equation of both the TDSE and the guidance formula, &j. We

) A . . erformed the numerical integration of EdQ.) by using a
gi)rig?nng t:ﬁelnctlzrspsriectaiq[ijse(E:itoHr;g‘lIg)g:’?ijzccﬁ‘brlnzg;]aotl\(l)-n dSourth-order Runge-Kutta integration procedure with integra-

ing in the potential/+Q. The equivalent Newtonian form tion stepst=0.01—-0.001. The integration was performed up

for the equation of motion is to times oft=1.5x 10°.
q Consider the dynamics of a particle initially in the quan-

2y tum state¢(x,0)=u§(x)+iu3+(x) whose position is located
Mgz = =V(V+Q)|x=x) - (3)  at the right of the barrier, at,=3. We find that the particle
undergoes a periodic behavior, with a period givenToy

Therefore, in the QTM framework quantum dynamics is=2mh/(E3 —Ez). The particle is periodically “tunneling”
similar to classical dynamics, with an important addition: thesince the barrier energy>E; >E; . The phase portrait is
particle is subjected not only to a classical external potentiashown in Fig. 1. In that case, the largest Lyapunov exponent
V(x), but also to a quantum internal potent@(x,t). The IS zero. A simple explanation for that phenomenon, from the
latter depends on both the external potential and the form dRTM point of view, is that the particle is not only subject to
the initial wave packet. the barrier potential but also to the oscillating quantum po-
Owing to the nonlinear nature of the quantum potentialtential generated by the field. As a result, the effective
and its time dependence, a particle subjected to a harmonpotential near the center of the well is no longer constant but
classical potential/(x) may show a chaotic behavior in the oscillating in time, leading to an effective energy barrier that
quantum regime, which would not be present had the particlés smaller than the kinetic energy of the particle in the same
been treated classicall{t3,16. Pattanayak and Schiyé7],  region. A change in the form of the wave functiontat0
by using a semiquantal approximation for the double-wellléads to a change in the form of the quantum potential and,
potential, were able to find quantum chaos for an extendetherefore, to an altogether different dynamics. For instance,
classical potential which effectively included effects of quan-by taking #(x,0)=us (X)+u, (X)+iu; (x) and the same
tum fluctuations, thereby showing that the presence of quarninitial position x,=3, the particle undergoes a quasiperiodic
tum effects could induce chaos. behavior, as shown in Figs(&—2(c). The quasiperiodic be-
One of the primary goals of the present work is to com-havior can be readily seen from the Poincplat [Fig. 2(b)],
pare the predictions of conventional quantum mechanicsvhere all the points fall on a closed curve. In that case, the
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FIG. 2. Particle in a double square-well potential in a quasiperi- FIG. 3. Chaotic behavior of a particle in a double square well.
odic regime. In the system of units uséds 2m=1, and the length  Again, the units are such that=2m=1, and the unit of length is
unit is the barrier half-widtha. (a) Plot of the phase-space trajec- the barrier half-widtha. (a) Phase-space diagram. We took the

tory. The initial position was taken ag=3.0 and the wave func-
tion att=0 was given byy(x,0)=u; (x)+uj (x)+iuj (x); (b)

initial position x,=3.0 and the wave function da=0 as #(x,0)
=34 _.ul+iug (x); (b) Poincaresection for the velocity and po-

Poincaresection for the velocity and position using a strobe fre- sition using a strobe angular frequensy: (E; —E)/#; (c) power
quency ofw=(E; —E])/#; (c) power spectral density as a func- spectral density as a function of frequerfey 27/ w obtained from

tion of frequencyf=2x/w obtained from a time series foq(t).

The system is quasiperiodic.

a time series fok(t). The system is in a chaotic state.

lar to those found in classical chaotic systems. The largest

two largest Lyapunov exponents are equal to zero. The Fou-yapunov exponent calculated numerically from the time se-
rier spectral analysis shows a sharply defined peak distribuies of x(t) using the algorithm of Eckmanat al. [18] is

tion, as depicted in Fig.(2). If the initial wave function has

found to be positive X=0.10+0.02), typical of a chaotic

the form l//(X,O):Eﬁ=1U;(X)+iUg(X), the particle under- state. By keeping in mind that the energy levels included in
goes a chaotic behavior for the same initial position, agthe wave packet are lower than the barrier height, one can

shown in Figs. 8)—-3(c). The Poincareplot consists of

see that the above result is different from that of Berkovits

points that are now scattered in the phase-space plane, artal.[7], which claims that quantum chaotic behavior should
the power spectrum shows the typical sharp peaks in a backappen only for energies just above the barrier level.
ground of a broadband distribution, features which are simi- In order to make a comparison with the results of Ash-
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kenazyet al.[6], we now elect to represent the initial state of To summarize, we have shown that within Bohm'’s inter-
the particle as a Gaussian wave packet initially placed on thpretation of quantum mechanics, a particle in a one-
left of the barrier at position,, with an average momentum dimensional square double-well potential can undergo cha-
ko, and a spread governed hy,. Thus, we sety(x,0)  otic motion, contrary to claims found in the literature that
= exfikox— (x—Xo)%203]. By taking ky=0.1, 09=5, Xq= precluded quantum chaos in one-dimensional sys{drél
—25, andV=5 for the barrier height, the same parametersn addition, based on our definition of chaos we obtain re-
used in Ref[6], we find that a particle initially located at the sults that are different from those of Reff§] and[7]. In one
center of the packet undergoes a quasiperiodic motion an@istance, we find quantum chaos behavior even when the
not a chaotic motion as predicted by those authors. energy levels used in the wave packet are lower than the
We should point out that from the QTM point of view barrier height, contrary to Ref7]. The wave packets were

there is a classical analog to the problem discussed in theuilt from the ground state and a few low-lying excited states
present work. It is the problem of a particle trapped in gof the double-well, all of which involve a finité. The es-
quartic potential well in the presence of an external oscillasential ingredients for our results are the finiteness,dhe

tory force field. The potential energy of the model is givenCOﬂfining walls, and the Bohmian trajectories. We believe,
by however, that the barrier is unimportant for the occurrence of
chaos in the well. That is what happens in the quantum
V(x)=ax*~bx*+cx cog wot), (4)  square billiard, the two-dimensional version of the single
. . _ well, where we find instances of chaotic Bohmian trajecto-

wherea,b are positive constants, is a constant, ane IS ries even in the absence of internal barrig@@]. We are still
the frequency of a forcing field. The oscillatory field in the i, estigating the problem of what happens to the trajectories
classical case plays a role similar to that of the quantumy, he semiclassical limit. In the case where the initial wave

potential for the corresponding quantum case. The effect ofncion is a Gaussian packet, we find quasiperiodic motion
the forcing field is to alter the shape of the double-well andi,stead of the chaotic motion reported in RE.

effectively to produce oscillations in the height of the barrier.

In fact, the classical problem defined by E4) has already We wish to acknowledge G. Reiter for very stimulating
been studied by Reichl and Zhefig9] and it shows simi- discussions and S. Oliffson Kamphorst for providing us with
larities in its dynamical behavior with the quantum doubleher computer code for evaluating Lyapunov exponents. One
square-well potential discussed here. The system undergoes$ us (O.F.A.B) would like to thank the Departmento de
periodic, quasiperiodic, and chaotic behaviors for an approFisica, UFMG, where part of this work was done, for their
priate choice of the parameter in the potential. The Poincarbospitality. This work was partially supported by FAPEMIG,
plots are similar to those found in the qguantum problem. CNPg, MCT, and FINERBrazilian agencies
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