11 research outputs found

    Sertifikat HKI Development Of Intructional Design ICARE Assisted Learning Management System To Enhance The Learning Process

    Get PDF
    Abstract Haki ini merupakan jenis ciptaan karya tulis (artikel) dengan judul artikel Development Of Intructional Design ICARE Assisted Learning Management System To Enhance The Learning Process yang di pegang hak cipta oleh Wikan Budi Utami, Fikri Aulia dan M. Arif Budiman S. Alamat link jurnal https://www.atlantis-press.com/proceedings/icet-17/2588349

    Sertifikat HKI Development Of Intructional Design ICARE Assisted Learning Management System To Enhance The Learning Process

    Get PDF
    Haki ini merupakan jenis ciptaan karya tulis (artikel) dengan judul artikel Development Of Intructional Design ICARE Assisted Learning Management System To Enhance The Learning Process yang di pegang hak cipta oleh Wikan Budi Utami, Fikri Aulia dan M. Arif Budiman S

    Javan Leaf Monkey (Trachypithecus Auratus) Movement in a Fragmented Habitat, at Bromo Tengger Semeru National Park, East Java, Indonesia

    Full text link
    Pergerakan Lutung budeng (Trachypithecus auratus) didaerah habitat terfragmentasi Taman Nasional Bromo Tengger Semeru, Jawa Timur, Indonesia. Pergerakan lutung budeng di daerah habitat terfragmentasi diamati dengan metode transek. Hasil kajian menunjukkan bahwaada empat kelompok masing masing beranggotakan 12 (grup A), 16 (grup B), 15 (grup C) dan 12 lutung (grup D). Penelitian yang dilakukan disekitar hunian penduduk, jalan, hutan terdegradasi dan jalan-jalan setapak mengindikasikan bahwa lutung dalam aktivitas hariannya memerlukan waktu 32,82% diantaranya digunakan untuk makan, 30,97% untuk istirahat dansisanya 31,79 untuk pergerakan perpindahan. Lutung dalam aktivitasnya 50,53% menggunakan wilayah puncak kanopi tumbuhan, 41,99%menggunakan kanopi tumbuhan bagian tengah dan hanya 2,49 % yang menggunakan kanopi bawah

    Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds

    No full text
    Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop

    The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK

    No full text
    A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation. © 2013 Macmillan Publishers Limited. All rights reserved
    corecore