4 research outputs found

    A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

    Get PDF
    Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, Hg0 gas), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m-3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m-3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m-3.We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.Grants CGL2009-13171 and CTM2012-33918 from the Spanish Ministry of Economy and Competitiveness and PII1I09-0142- 4389 from theCastilla-LaMancha (Spain)RegionalGovernment.Published713-7346A. Monitoraggio ambientale, sicurezza e territorioJCR Journalrestricte

    How fast do gully headcuts retreat?

    No full text
    Gullies can be a dominant sediment source at field and catchment scales. Over the past decades, several studies have been conducted that quantify gully headcut retreat (GHR) in different environments. Although this led to important site-specific and regional insights, the overall importance of this erosion process or the factors that control it at a global scale remain poorly understood. This study aims to bridge this gap by conducting a meta-analysis of measured GHR rates worldwide. Through an extensive literature review, GHR rates for ca. 900 individual actively retreating gullies (comprising a total measuring period of > 19 000 years) from more than 50 study areas worldwide have been compiled. Each GHR rate was measured by means of repeated field surveys and/or analyses of aerial photographs over a period of at least one year. The collected data shows a very large variability, both in terms of gully dimensions (cross-sectional areas ranging between 0.11 and 816 m2 with a median of 4 m2) and GHR rates (ranging between 0.003 and 47 000 m3/y with a median of 2.2 m3/y). Linear GHR rates vary between 0.01 and 70 m/y (median: 0.82 m/y). By means of statistical analyses for a subset of 689 gullies with a known contributing area, we explored which factors are most relevant in explaining the observed 6 orders of magnitudes of variation in volumetric GHR rates. Results show that measured GHR rates are significantly correlated to the runoff contributing area of the gully (r2 = 0.13) and the average rainfall depth on a rainy day (i.e. the long-term average annual rainfall depth divided by the average number of rainy days; r2 = 0.39). Combined, these two factors explained 57% of the observed variability in average GHR rates. Other factors (e.g. land use or soil type) showed no significant correlation with the observed GHR rates. This may be attributed to the uncertainties associated with accurately quantifying these factors. In addition, a large part of the remaining unexplained variance may be due to measuring periods that are too short to fully capture the large temporal variability that are typical for GHR rates. This is illustrated by the fact that catchment area and average rainfall depth on a rainy day explain nearly 70% of the observed variation in GHR rates for gullies monitored over a periodpublisher: Elsevier articletitle: How fast do gully headcuts retreat? journaltitle: Earth-Science Reviews articlelink: http://dx.doi.org/10.1016/j.earscirev.2016.01.009 content_type: article copyright: Copyright © 2016 Elsevier B.V. All rights reserved.status: publishe

    A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

    No full text
    Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, Hg0 gas), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m-3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m-3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m-3.We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans
    corecore