231 research outputs found
Proximity Effects in Radiative Transfer
Though the dependence of near-field radiative transfer on the gap between two
planar objects is well understood, that between curved objects is still
unclear. We show, based on the analysis of the surface polariton mediated
radiative transfer between two spheres of equal radii and minimum gap ,
that the near--field radiative transfer scales as as
and as for larger values of up to the far--field limit. We
propose a modified form of the proximity approximation to predict near--field
radiative transfer between curved objects from simulations of radiative
transfer between planar surfaces.Comment: 5 journal pages, 4 figure
Spontaneous emission by rotating objects: A scattering approach
We study the quantum electrodynamics (QED) vacuum in the presence of a body
rotating along its axis of symmetry and show that the object spontaneously
emits energy if it is lossy. The radiated power is expressed as a general trace
formula solely in terms of the scattering matrix, making an explicit connection
to the conjecture of Zel'dovich [JETP Lett. 14, 180 (1971)] on rotating
objects. We further show that a rotating body drags along nearby objects while
making them spin parallel to its own rotation axis
A theory of electromagnetic fluctuations for metallic surfaces and van der Waals interactions between metallic bodies
A new general expression is derived for the fluctuating electromagnetic field
outside a metal surface, in terms of its surface impedance. It provides a
generalization to real metals of Lifshitz theory of molecular interactions
between dielectric solids. The theory is used to compute the radiative heat
transfer between two parallel metal surfaces at different temperatures. It is
shown that a measurement of this quantity may provide an experimental
resolution of a long-standing controversy about the effect of thermal
corrections on the Casimir force between real metal plates.Comment: 4 pages, 2 figures; typos corrected, minor changes to match the
published version in Physical Review Letter
Quantum field theory of the van der Waals friction
The van der Waals friction between two semi-infinite solids, and between a
small neutral particle and semi-infinite solid is reconsidered on the basis of
thermal quantum field theory in the Matsubara formulation. The calculation of
the friction to linear order in the sliding velocity is reduced to the finding
of the equilibrium Green functions. Thus this approach cab be extended for
bodsies with complex geometry. The friction calculated in this approach agrees
with the friction calculated using a dynamical modification of the Lifshitz
theory, which is based on the fluctuation-dissipation therem. We show that the
van der Waals fricxtion can be measured in non-contact friction experiment
using state-of-the art equipment
Second-order calculation of the local density of states above a nanostructured surface
We have numerically implemented a perturbation series for the scattered
electromagnetic fields above rough surfaces, due to Greffet, allowing us to
evaluate the local density of states to second order in the surface profile
function. We present typical results for thermal near fields of surfaces with
regular nanostructures, investigating the relative magnitude of the
contributions appearing in successive orders. The method is then employed for
estimating the resolution limit of an idealized Near-Field Scanning Thermal
Microscope (NSThM).Comment: 10 pages, 7 figure
Theory of friction: contribution from fluctuating electromagnetic field
We calculate the friction force between two semi-infinite solids in relative
parallel motion (velocity ), and separated by a vacuum gap of width . The
friction force result from coupling via a fluctuating electromagnetic field,
and can be considered as the dissipative part of the van der Waals interaction.
We consider the dependence of the friction force on the temperature , and
present a detailed discussion of the limiting cases of small and large and
.Comment: 15 pages, No figure
Statistics of speckle patterns
We develop a general method for calculating statistical properties of the
speckle pattern of coherent waves propagating in disordered media. In some
aspects this method is similar to the Boltzmann-Langevin approach for the
calculation of classical fluctuations. We apply the method to the case where
the incident wave experiences many small angle scattering events during
propagation, but the total angle change remains small. In many aspects our
results for this case are different from results previously known in the
literature. The correlation function of the wave intensity at two points
separated by a distance , has a long range character. It decays as a power
of and changes sign. We also consider sensitivities of the speckles to
changes of external parameters, such as the wave frequency and the incidence
angle.Comment: 4 pages, 2 figure
Propagation of coherent waves in elastically scattering media
A general method for calculating statistical properties of speckle patterns
of coherent waves propagating in disordered media is developed. It allows one
to calculate speckle pattern correlations in space, as well as their
sensitivity to external parameters. This method, which is similar to the
Boltzmann-Langevin approach for the calculation of classical fluctuations,
applies for a wide range of systems: From cases where the ray propagation is
diffusive to the regime where the rays experience only small angle scattering.
The latter case comprises the regime of directed waves where rays propagate
ballistically in space while their directions diffuse. We demonstrate the
applicability of the method by calculating the correlation function of the wave
intensity and its sensitivity to the wave frequency and the angle of incidence
of the incoming wave.Comment: 19 pages, 5 figure
Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects
We present a detailed derivation of heat radiation, heat transfer and
(Casimir) interactions for N arbitrary objects in the framework of
fluctuational electrodynamics in thermal non-equilibrium. The results can be
expressed as basis-independent trace formulae in terms of the scattering
operators of the individual objects. We prove that heat radiation of a single
object is positive, and that heat transfer (for two arbitrary passive objects)
is from the hotter to a colder body. The heat transferred is also symmetric,
exactly reversed if the two temperatures are exchanged. Introducing partial
wave-expansions, we transform the results for radiation, transfer and forces
into traces of matrices that can be evaluated in any basis, analogous to the
equilibrium Casimir force. The method is illustrated by (re)deriving the heat
radiation of a plate, a sphere and a cylinder. We analyze the radiation of a
sphere for different materials, emphasizing that a simplification often
employed for metallic nano-spheres is typically invalid. We derive asymptotic
formulae for heat transfer and non-equilibrium interactions for the cases of a
sphere in front a plate and for two spheres, extending previous results. As an
example, we show that a hot nano-sphere can levitate above a plate with the
repulsive non-equilibrium force overcoming gravity -- an effect that is not due
to radiation pressure.Comment: 29 pages, 6 figures (v2: Sentence added in Sec. 1
Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies
We study the radiative heat transfer and the Casimir-Lifshitz force occurring
between two bodies in a system out of thermal equilibrium. We consider bodies
of arbitrary shape and dielectric properties, held at two different
temperatures, and immersed in a environmental radiation at a third different
temperature. We derive explicit closed-form analytic expressions for the
correlations of the electromagnetic field, and for the heat transfer and
Casimir-Lifshitz force, in terms of the bodies scattering matrices. We then
consider some particular cases which we investigate in detail: the atom-surface
and the slab-slab configurations
- …