199 research outputs found

    New in vitro colonic fermentation model for Salmonella infection in the child gut

    No full text
    The definitive version is available at ww3.interscience.wiley.comInternational audienceIn this study, a new in vitro continuous colonic fermentation model of Salmonella infection with immobilized child fecal microbiota and Salmonella serovar Typhimurium was developed for the proximal colon. This model was then used to test the effects of two amoxicillin concentrations (90 and 180 mg day(-1)) on the microbial composition and metabolism of the gut microbiota and on Salmonella serovar Typhimurium during a 43-day fermentation. Addition of gel beads (2%, v/v) colonized with Salmonella serovar Typhimurium in the reactor resulted in a high and stable Salmonella concentration (log 7.5 cell number mL(-1)) in effluent samples, and a concomitant increase of Enterobacteriaeceae, Clostridium coccoides-Eubacterium rectale and Atopobium populations and a decrease of bifidobacteria. During amoxicillin treatments, Salmonella concentrations decreased while microbial balance and activity were modified in agreement with in vivo data, with a marked decrease in C. coccoides-E. rectale and an increase in Enterobacteriaceae. After interruption of antibiotic addition, Salmonella concentration again increased to reach values comparable to that measured before antibiotic treatments, showing that our model can be used to simulate Salmonella shedding in children as observed in vivo. This in vitro model could be a useful tool for developing and testing new antimicrobials against enteropathogens

    New in vitro colonic fermentation model for Salmonella infection in the child gut

    Get PDF
    In this study, a new in vitro continuous colonic fermentation model of Salmonella infection with immobilized child fecal microbiota and Salmonella serovar Typhimurium was developed for the proximal colon. This model was then used to test the effects of two amoxicillin concentrations (90 and 180 mg day−1) on the microbial composition and metabolism of the gut microbiota and on Salmonella serovar Typhimurium during a 43-day fermentation. Addition of gel beads (2%, v/v) colonized with Salmonella serovar Typhimurium in the reactor resulted in a high and stable Salmonella concentration (log 7.5 cell number mL−1) in effluent samples, and a concomitant increase of Enterobacteriaeceae, Clostridium coccoides-Eubacterium rectale and Atopobium populations and a decrease of bifidobacteria. During amoxicillin treatments, Salmonella concentrations decreased while microbial balance and activity were modified in agreement with in vivo data, with a marked decrease in C. coccoides-E. rectale and an increase in Enterobacteriaceae. After interruption of antibiotic addition, Salmonella concentration again increased to reach values comparable to that measured before antibiotic treatments, showing that our model can be used to simulate Salmonella shedding in children as observed in vivo. This in vitro model could be a useful tool for developing and testing new antimicrobials against enteropathogen

    Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice

    Get PDF
    Aims/hypothesis: Adipocytes in obesity are characterised by increased cell size and insulin resistance compared with adipocytes isolated from lean patients. However, it is not clear at present whether hypertrophy actually does drive adipocyte insulin resistance. Thus, the aim of the present study was to metabolically characterise small and large adipocytes isolated from epididymal fat pads of mice fed a high-fat diet (HFD). Methods: C57BL/6J mice were fed normal chow or HFD for 8weeks. Adipocytes from epididymal fat pads were isolated by collagenase digestion and, in HFD-fed mice, separated into two fractions according to their size by filtration through a nylon mesh. Viability was assessed by lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium assays. Basal and insulin-stimulated d-[U-14C]glucose incorporation and lipolysis were measured. Protein levels and mRNA expression were determined by western blot and real-time RT-PCR, respectively. Results: Insulin-stimulated D-[U-14C]glucose incorporation into adipocytes isolated from HFD-fed mice was reduced by 50% compared with adipocytes from chow-fed mice. However, it was similar between small (average diameter 60.9 ± 3.1μm) and large (average diameter 83.0 ± 6.6μm) adipocytes. Similarly, insulin-stimulated phosphorylation of protein kinase B and AS160 were reduced to the same extent in small and large adipocytes isolated from HFD-mice. In addition, insulin failed to inhibit lipolysis in both adipocyte fractions, whereas it decreased lipolysis by 30% in adipocytes of chow-fed mice. In contrast, large and small adipocytes differed in basal lipolysis rate, which was twofold higher in the larger cells. The latter finding was associated with higher mRNA expression levels of Atgl (also known as Pnpla2) and Hsl (also known as Lipe) in larger adipocytes. Viability was not different between small and large adipocytes. Conclusions/interpretation: Rate of basal lipolysis but not insulin responsiveness is different between small and large adipocytes isolated from epididymal fat pads of HFD-fed mic

    NONSENSE MUTATIONS AFFECTING THE his4 ENZYME COMPLEX OF YEAST

    Full text link

    The Portal Theory Supported by Venous Drainage–Selective Fat Transplantation

    Get PDF
    OBJECTIVE The "portal hypothesis" proposes that the liver is directly exposed to free fatty acids and cytokines increasingly released from visceral fat tissue into the portal vein of obese subjects, thus rendering visceral fat accumulation particularly hazardous for the development of hepatic insulin resistance and type 2 diabetes. In the present study, we used a fat transplantation paradigm to (artificially) increase intra-abdominal fat mass to test the hypothesis that venous drainage of fat tissue determines its impact on glucose homeostasis. RESEARCH DESIGN AND METHODS Epididymal fat pads of C57Bl6/J donor mice were transplanted into littermates, either to the parietal peritoneum (caval/systemic venous drainage) or, by using a novel approach, to the mesenterium, which confers portal venous drainage. RESULTS Only mice receiving the portal drained fat transplant developed impaired glucose tolerance and hepatic insulin resistance. mRNA expression of proinflammatory cytokines was increased in both portally and systemically transplanted fat pads. However, portal vein (but not systemic) plasma levels of interleukin (IL)-6 were elevated only in mice receiving a portal fat transplant. Intriguingly, mice receiving portal drained transplants from IL-6 knockout mice showed normal glucose tolerance. CONCLUSIONS These results demonstrate that the metabolic fate of intra-abdominal fat tissue transplantation is determined by the delivery of inflammatory cytokines to the liver specifically via the portal system, providing direct evidence in support of the portal hypothesis

    Zygmunt Rytkan aika-tila-projekteista

    Get PDF
    corecore