1,050 research outputs found

    Molecular hydrogen in the galaxy and galactic gamma rays

    Get PDF
    Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center

    The I-mode confinement regime at ASDEX Upgrade: global propert ies and characterization of strongly intermittent density fluctuations

    Get PDF
    Properties of the I­mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L­I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I­mode pedestal is peeling­ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ≈ ⊥ k 5 – 12 cm − 1 , with ⊥ k the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X­point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.European Union (EUROfusion 633053)European Union (EUROfusion AWP15­ENR­09/IPP­02

    I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties

    Get PDF
    The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g. with unfavourable ion B ∇ direction. It is characterised by the development of a temperature pedestal while the density remains roughly as in the L-mode. This leads to a confinement improvement above the L-mode level which can sometimes reach H-mode values. This regime, already obtained in the ASDEX Upgrade tokamak about two decades ago, has been studied again since 2009 taking advantage of the development of new diagnostics and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold, pedestal characteristics and confinement, are independent of the heating method. The power required at the L-I transition exhibits an offset linear density dependence but, in contrast to the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be mainly determined by the edge pressure gradient and the comparison between ECRH and NBI induced L-I transitions suggests that the ion channel plays a key role. The I-mode often evolves gradually over a few confinement times until the transition to H-mode which offers a very interesting situation to study the transport reduction and its link with the pedestal formation. Exploratory discharges in which n = 2 magnetic perturbations have been applied indicate that these can lead to an increase of the I-mode power threshold by flattening the edge pressure at fixed heating input power: more heating power is necessary to restore the required edge pressure gradient. Finally, the confinement properties of the I-mode are discussed in detail.European Commission (EUROfusion 633053

    Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust

    Get PDF
    This is the second paper (the first was astro-ph/9704267) of a series analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we present a quantitative model of GCR origin and acceleration based on the acceleration of a mixture of interstellar and/or circumstellar gas and dust by supernova remnant blast waves. We present results from a nonlinear shock model which includes (i) the direct acceleration of interstellar gas-phase ions, (ii) a simplified model for the direct acceleration of weakly charged dust grains to energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional energy losses of the grains colliding with the gas, (iv) sputtering of ions of refractory elements from the accelerated grains and (v) the further shock acceleration of the sputtered ions to cosmic ray energies. The calculated GCR composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso
    corecore