16 research outputs found

    Selected Advances of Quantum Biophotonics – a Short Review

    Get PDF
    This article discusses four fields of study with the potential to revolutionize our understanding and interaction with biological systems: quantum biophotonics, molecular and supramolecular bioelectronics, quantum-based approaches in gaming, and nano-biophotonics. Quantum biophotonics uses photonics, biochemistry, biophysics, and quantum information technologies to study biological systems at the sub-nanoscale level. Molecular and supramolecular bioelectronics aim to develop biosensors for medical diagnosis, environmental monitoring, and food safety by designing materials and devices that interface with biological systems at the molecular level. Quantum-based approaches in gaming improve modeling of complex systems, while nanomedicine enhances disease diagnosis, treatment, and prevention using nanoscale devices and sensors developed with quantum biophotonics. Lastly, nano-biophotonics studies cellular structures and functions with unprecedented resolution

    IRT research on influence of long-term loads on defects in FRP strengthened RC beams

    Get PDF
    It has been more than two decades, since FRP strengthening method was first time used in Poland. Therefore there is a natural need to develop an efficient quality assessment technique to verify design assumptions of strengthening in existing structures after many years. One of the promising non-destructive method of quality assessment is infrared thermography (IRT). In this paper, an initial study on recognition of delamination mainly in CFRP laminates using IRT was conducted as well as the influence of long-term loads on defects in CFRP strengthened RC beams was presented

    Selected Advances of Quantum Biophotonics – a Short Review

    Get PDF
    This article discusses four fields of study with the potential to revolutionize our understanding and interaction with biological systems: quantum biophotonics, molecular and supramolecular bioelectronics, quantum-based approaches in gaming, and nano-biophotonics. Quantum biophotonics uses photonics, biochemistry, biophysics, and quantum information technologies to study biological systems at the sub-nanoscale level. Molecular and supramolecular bioelectronics aim to develop biosensors for medical diagnosis, environmental monitoring, and food safety by designing materials and devices that interface with biological systems at the molecular level. Quantum-based approaches in gaming improve modeling of complex systems, while nanomedicine enhances disease diagnosis, treatment, and prevention using nanoscale devices and sensors developed with quantum biophotonics. Lastly, nano-biophotonics studies cellular structures and functions with unprecedented resolution

    Coupling of conductive, convective and radiative heat transfer in Czochralski crystal growth process

    Get PDF
    Abstract This paper studies the conjugate problems of fluid flow and energy transport (involving conduction, convection and radiation heat transfer) within a material changing its phase. The analysis focuses on the Czochralski crystal growth process. The solidifying material is treated as a pure substance with constant material properties. The solution of the resulting 3-D, axisymmetric, non-linear problem is obtained iteratively using the commercial CFD package Fluent. The algorithm employed here treats each subdomain of the system separately, i.e. the liquid and solid phases of the solidified material, as well as the inertial gas surrounding both phases. Results of a test case shows the velocity field and temperature distribution within a simple system employed for the growth of a single silicon crystal

    Estimation Of Constant Thermal Conductivity By Use Of Proper Orthogonal Decomposition

    No full text
    An inverse approach is developed to estimate the unknown heat conductivity and the convective heat transfer coefficient. The method relies on proper orthogonal decomposition (POD) in order to filter out the higher frequency error. The idea is to solve a sequence of direct problems within the body under consideration. The solution of each problem is sampled at a predefined set of points. Each sampled temperature field, known in POD parlance as a snapshot, is obtained for an assumed value of the retrieved parameters. POD analysis, as an efficient mean of detecting correlation between the snapshots, yields a small set of orthogonal vectors (POD basis), constituting an optimal set of approximation functions. The temperature field is then expressed as a linear combination of the POD vectors. In standard applications, the coefficients of this combination are assumed to be constant. In the proposed approach, the coefficients are allowed to be a nonlinear function of the retrieved parameters. The result is a trained POD base, which is then used in inverse analysis, resorting to a condition of minimization of the discrepancy between the measured temperatures and values calculated from the model. Several numerical examples show the robustness and numerical stability of the scheme. © Springer-Verlag 2005

    Solving Transient Nonlinear Heat Conduction Problems By Proper Orthogonal Decomposition And The Finite-Element Method

    No full text
    A method of reducing the number of degrees of freedom and the overall computing time by combining proper orthogonal decomposition (POD) with the finite-element method (FEM) has been devised. The POD-FEM technique can be applied both to linear and nonlinear problems. At the first stage of the method a standard FEM time-stepping procedure is invoked. The temperature fields obtained for the first few time steps undergo statistical analysis, yielding an optimal set of globally defined trial and weighting functions for the Galerkin solution of the problem at hand. The resulting set of ordinary differential equations (ODEs) is of greatly reduced dimensionality when compared with the original FEM formulation. For linear problems, the set can be solved either analytically, resorting to the modal analysis technique, or by time stepping. In the case of nonlinear problems, only time stepping can be applied. The focus of this article is on the time-stepping approach, in which the generation of the FEM-POD matrices, requiring some additional matrix manipulations, can be embedded in the assembly of standard FEM matrices. The gain in execution times comes from the significantly shorter time of solution of the set of algebraic equations at each time step. Numerical results are presented for both linear and nonlinear problems. In the case of linear problems, the derived time-stepping technique is compared with the standard FEM and the modal analysis. For nonlinear problems the proposed POD-FEM approach is compared with the standard FEM. Good accuracy of the POD-FEM solver has been observed. Controlling the error introduced by the reduction of the degrees of freedom in POD is also discussed. Copyright © Taylor & Francis Inc

    Coupling Bem, Fem And Analytic Solutions In Steady-State Potential Problems

    No full text
    Problems solved by using different steady-state solution techniques in adjacent subregions are discussed. The computational domain typically consists of two subregions, with a linear boundary value problem in one of them. BEM or analytical methods are used to solve the problem in this subregion. Static condensation of the off-interfacial degrees of freedom in this subdomain produces a linear set of equations linking nodal potentials and fluxes on the interface. This set of equations is generated by solving a sequence of boundary value problems in the linear subregion. Access to the source version of the software used to solve these boundary value problems is not required. Thus, the condensation can be accomplished using any commercial BEM code. The resulting set of equation is then treated as a boundary condition attached to the second subregion. In the latter, any numerical technique can be used and both linear and nonlinear problems may be considered. The paper addresses coupling of BEM and FEM, BEM and BEM and analytical solutions with BEM and FEM. Numerical examples are included. © 2002 Elsevier Science Ltd. All rights reserved
    corecore