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Abstract

This paper studies the conjugate problems of fluid flow and energy transport (involving conduction, convection and

radiation heat transfer) within a material changing its phase. The analysis focuses on the Czochralski crystal growth

process. The solidifying material is treated as a pure substance with constant material properties. The solution of the

resulting 3-D, axisymmetric, non-linear problem is obtained iteratively using the commercial CFD package Fluent. The

algorithm employed here treats each subdomain of the system separately, i.e. the liquid and solid phases of the solidified

material, as well as the inertial gas surrounding both phases.

Results of a test case shows the velocity field and temperature distribution within a simple system employed for the

growth of a single silicon crystal.
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1. Introduction

The Czochralski crystal growth process is now-

adays commonly used to manufacture high quality

crystals, e.g. silicon bulk crystals. In this process, a

cylindrical crystal grows due to the phase change

phenomena occurring in the melt, and is then

vertically pulled out of the system. The melt is
placed in a cylindrical crucible, located in a fur-

nace, and is heated above the melting temperature

by a resistive or inductive electrical heater. The

quality of the growing crystal depends on various

quantities and phenomena, but the principal ones

generally are heat transfer processes and environ-

mental thermal parameters. Thermal parameters

certainly influence the heat and mass transfer in
the system, interfacial phenomena, as well as the

transport of dopants. Therefore, modelling of the

heat and mass transfer processes within the system
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is essential for better understanding and control-

ling the crystal growth process.

There are a number of reasons why the math-

ematical modelling of the heat transfer problem

in these kind of processes is considered to be a

very challenging task. The main ones area as
follows:

• The mathematical representation of the prob-

lem, which also involves the motion of a liquid

phase or gas surrounding the solidifying mate-

rial, requires the solution of a coupled system

of continuity, momentum and energy equations;

• The position of the phase change boundary,
where internal heat generation takes place as a

result of solidification, is unknown and has to

be determined as part of the solution;

• Phase change systems usually work at elevated

temperatures. This means that thermal radia-

tion may play a crucial role, not only in terms

of boundary phenomena, but also within the so-

lidifying or melted medium, if the medium is
semitransparent (e.g. some crystals, glass, etc.).

The Czochralski process involves all transport

phenomena encountered in solid–liquid phase

change systems, including the conjugate conduc-

tion–convection–radiation heat transfer. There-

fore, controlling Czochralski processes is limited

by the degree to which these complex phenomena
are properly understood and modelled.

The first published works on the mathematical

modelling of the Czochralski process have ne-

glected convection in the melt, radiation in the

system and/or assumed a planar interface between

melt and crystal. Only recently have these problems

received appropriate attention, e.g. [1–9]. Nowak

and co-workers have also solved the problem
[10,11,14] as a conjugate conduction–convection–

radiation heat transfer process resulting from

continuous solidification of a semitransparent me-

dium. The problem has been analyzed through the

coupling of two computer codes:

• the commercial CFD package Fluent [12],

• an in-house boundary element method (BEM)
code which enables radiation to be considered

[13].

The CFD package Fluent was employed in

[10,11] to solve a conjugate system of equations,

for the liquid and solid phases, consisting of the

continuity equation, the momentum equations (in

the liquid phase only) and the energy equation.

It is important to notice that the latter equation
contains volumetric heat sources resulting from

thermal radiation occurring within the system.

These sources were calculated by the in-house code

using typical BEM algorithms. Thus, by using the

two codes in succession, the velocity field in the

liquid phase and the resulting temperatures and

heat fluxes have been calculated. However, some

difficulties were experienced with convergence in
the Fluent code, particularly in the liquid phase

for higher values of the thermal expansion co-

efficient. To avoid this drawback, a new approach

for solving the problem is proposed in this paper.

The new formulation is based on the assumption

that the heat transfer and fluid flow problems

can be solved by the Fluent package separately

for each phase, and the solutions thus obtained are
then coupled along the interfaces by taking into

account appropriate interfacial boundary condi-

tions. These conditions can only be satisfied

through an iteration process, which starts with an

initial guess and is gradually adjusted until con-

vergence.

Generally, there are two kinds of interfaces

within the system. The interfaces between an inert
gas surrounding the solidifying material (e.g.

argon) require adjusting both temperatures and

heat fluxes; however, their location is knwon in

advance. In contrast to that, the temperature along

the phase change front is known but both the heat

flux and the phase change front location have to be

determined.

The main aim of this paper is to examine the
methodology of coupling the solutions obtained

separately by the Fluent code for each subdomain,

i.e. liquid and solid phases of the solidifying ma-

terial and gas. Coupling these solutions requires a

new in-house code which iteratively adjusts the

continuity of temperature and heat fluxes along

the gas–liquid and gas–solid interfaces, as well

as the Stefan boundary conditions on the phase
change interface. At this stage of analysis, thermal

volume radiation within the crystal is neglected,
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although surface thermal radiation is still consid-

ered.

2. Problem formulation

To discuss the fundamentals of the proposed

methodology, a 3-D axisymmetric heat transfer

problem of Czochralski crystal growth is analyzed.
Due to the symmetry of the problem, only a cross-

section of the domain is schematically shown in

Fig. 1. The domain consists of three subdomains,

i.e. liquid and solid where the position of the in-

terface EH has to be determined, and the gas

subdomain.

A liquid material is contained in the crucible,

which is heated above the liquidus temperature.
The liquid then solidifies due to heat losses from

the system, and a crystal is pulled out at a known,

constant rate. The solidifying material is treated

as a pure substance. Thus, its phase change takes

place at a fixed temperature. As previously men-

tioned, volume thermal radiation is neglected in all

subdomains.

Line CDK in Fig. 1 represents the side wall of
the crucible, which is heated by a special heater,

while the dashed line KJF represents a cover

minimizing heat losses from the system. In this

paper, it is assumed that both these surfaces are

maintained at a temperature typical of the relevant

industrial application. It should also be noted that

the temperature of these surfaces are important

parameters for controlling the process.
Since the surface KJF is non-transparent, all

energy arriving there by radiation is partially ab-

sorbed and partially reflected (according to the

emissivity of the surface), see e.g. [13].

2.1. Governing equations

The boundary-value problem is formulated in a
coordinate system attached to the crucible. This

leads to the following system of conjugate steady-

state heat transfer equations:

r2T ðrÞ � 1

a
~tt � rT

�! ¼ 0 ð1Þ

~rr �~tt ¼ 0 ð2Þ

.ð~tt � ~rrÞ~tt ¼ �rp
�!þ gr2~tt þ .~ggbðT � T1Þ ð3Þ

where T is the temperature at point r, a stands for
the thermal diffusivity, k denotes the heat con-

ductivity while ~tt represents the velocity vector.

Density is represented by ., p stands for the

pressure, g is viscosity while b and ~gg are the

coefficient of thermal expansion and the gravita-

tional vector, respectively. Buoyancy effects are

modelled through the Boussinesq approximation.

The above system of equations is valid for both
the liquid and gas subdomains. The energy Eq. (1)

also governs the heat transfer in the solid, but in

this case ~tt ¼~ttx is the known, constant pulling

velocity vGF.

2.2. Boundary conditions

External boundary conditions are fairly stan-
dard, i.e. of the Dirichlet, Neumann and/or Robin

types, and as such will not be discussed herewith.

It should only be remembered that most of these

boundary conditions also account for radiative

heat fluxes.

The conditions along the phase change front

(surface EH) and the interfaces DE and EF are

obviously more interesting. The condition along
the phase change front involves continuity of

temperature but a jump in the heat flux across this

interface. Additionally, the common temperature

on both sides of the interface has to be equal to the

melting temperature, i.e.

TLðrÞ ¼ TSðrÞ ¼ Tph ð4ÞFig. 1. Domain under consideration.
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�kL

oTL

onph

þ kS

oTS

onph

¼ �lph.S ~tt �~nnph

� �
ð5Þ

where Tph is the phase change temperature, lph

stands for the latent heat while ~nnph represents the

vector normal to the phase change surface. The

subscripts L and S refer to liquid and solid phases,

respectively.

Simultaneously, the following no-slip boundary

condition holds for the melt velocity:

~ttL ¼~ttx ð6Þ

The conditions along the interfaces DE and EF

generally impose continuity, but modified by ra-
diative heat fluxes, arriving from the gas phase, at

the liquid or solid surface, i.e.

• along face DE

TLðrÞ ¼ TGðrÞ ð7Þ

kL

oTL

on
¼ kG

oTG

on
þ qrL ð8Þ

where qrL is a radiative heat flux arriving at the

liquid surface, at a fixed interface node.

• along face EF

TSðrÞ ¼ TGðrÞ ð9Þ

kS

oTS

on
¼ kG

oTG

on
þ qrS ð10Þ

where qrS is a radiative heat flux arriving at the

solid surface, at a fixed interface node.

3. Solution procedure

The commercial CFD package Fluent has been

employed to solve the coupled diffusion–convec-

tion–radiation boundary-value problem formu-

lated in the previous section. This package is based

on the finite volume method, and requires all

relevant boundary conditions to be defined. As

previously mentioned, in the proposed approach

Fluent is used separately for each selected subdo-
main, i.e. the liquid, solid and gas subdomains.

Therefore, there is a need for coupling the solu-

tions related to these subdomains within external

iterative loops.

The Stefan boundary conditions (4) and (5) are

used to couple the solutions for the liquid and

solid phases, as well as to correct the position of

the interface. The procedure consists of the fol-
lowing steps:

(1) assume an initial position of the interface EH;

(2) define the remaining boundaries of the solid,

liquid and gas subdomains, as well as their dis-

cretizations (which are kept constant through-

out the analysis);

(3) solve the boundary-value problem for the liq-
uid subdomain, assuming conditions (7) and

(8) along the interface DE, and a constant tem-

perature equal to the phase change tempera-

ture Tph along the trial interface EH;

(4) calculate the heat flux distribution qSnph
ðrÞ ¼

�kLðoTL=onphÞ along the solid side of the trial

interface EH, employing the boundary condi-

tion (5), i.e.

qSnph
ðrÞ ¼ qLnph

ðrÞ þ lph.S ~tt �~nnph

� �
ð11Þ

(5) solve the boundary-value problem for the solid

subdomain, assuming conditions (9) and (10)

along the interface DE, and the above-calcu-

lated heat flux densities along the trial inter-

face EH;

(6) verify the calculated temperature distribution

along the interface, and terminate iterative

loop if the differences between nodal tempera-
ture values on the interface and the phase

change temperature are sufficiently small;

(7) if not, define a new interface position and re-

turn to step 2.

A new interface position is obtained by relo-

cating nodes belonging to the interface EH. These

nodes are displaced along the x direction only. At
the mþ 1 iteration step, the new coordinate xi;mþ1

of the nodal point i located on the interface is

calculated by using the following heuristic for-

mula:

xi;mþ1 ¼ xi;m � x Ti;m
�

� Tph

� xi;m � xiþ1;m

Ti;m � Tiþ1;m
ð12Þ
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where subscripts i and iþ 1 are related to two

neighbouring nodes (the actual one and the first off

the interface) having the same y coordinate. The

symbol x denotes a relaxation coefficient used to

control convergence. In the present calculations,
the value of x ranges from 0.2 to 0.5.

4. Numerical example

To demonstrate the main features of the pro-

posed algorithms, a numerical example of Czo-

chralski crystal growth process has been solved.
The domain under consideration consists of silicon

[2] (treated here as non-transparent material) and a

hot gas (argon), as schematically shown in Fig. 1.

The thermophysical data and operating pa-

rameters can be found in [2] and [10]. It should be

noted that the density of the melt depends on the

coefficient of thermal expansion b and the tem-

perature, as given by the Boussinesq approxima-
tion. Thus, the density . of melt refers only to the

melting point temperature.

The discretization adopted assumes a division

of the melt into 50 
 60 elements, and a divison of

the solid and gas subdomains into 30 
 80 ele-

ments.

The value of the absorption coefficient, essential

for the radiation analysis, was assumed to be equal
to 0.85 for the crucible (i.e. surface DK), as well

as for the surfaces KJ and JF. A value of 0.7 was

assumed for the emissivity of the crystal surface

(EF), while a value of 0.3 was assumed for the melt

surface (DE).

A typical temperature distribution is shown in

Fig. 2, for the domain depicted in Fig. 1. In this

figure, the 1683 K isotherm shows the position of
the phase change front. The numerical solution

was obtained in 20 iterations, starting from a

horizontal position of the interface EH.

Velocity profiles within all subdomains are

shown in Fig. 3. Because different scales for the

velocity arrows are used in each subdomain, it is

important to remember that the maximum velocity

found in the liquid phase is equal to 0.00365 m/s,
while in the gas phase this quantity is equal to

0.165 m/s. Velocities in the solid are all equal to

1:39 
 10�5 m/s (the pulling rate).

The results shown in Figs. 2 and 3 are natural
extensions of the authors� previous works [10,11,

14]. The numerical results obtained here are also

quite similar to results presented by other authors,

who performed even more rigorous analysis of the

crystal growth process but using different numer-

ical methods, e.g. [8,9]. Although it is not possible

to quantitatively compare such results, a good

qualitative agreement is evident.

5. Conclusions

It has been demonstrated how the commercial

CFD software Fluent can be used to model the

steady-state conjugate problem involving heat

conduction, convection and surface thermal radi-
ation. The present simulation applied Fluent sep-

arately for each subdomain (i.e. solid, liquid and

gas phases), and an additional in-house code and

an additional iterative loop were thus required.

Fig. 2. Temperature distribution within cross-section of the

considered domain.
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Nevertheless, the proposed algorithm is quite

straightforward and converges fairly fast. Such

approach takes advantages of many valuable

techniques already available in Fluent, including

extensive pre- and post-processing facilities.
The computations proved the importance of

thermal radiation analysis. The coupling of radi-

ation with other heat transfer modes discussed in

this paper showed that the mathematical model

and solution procedures are compatible and ro-

bust. Only five external iterations were required

for the final solution of the numerical example

presented here. Such solution offers detailed in-
formation about temperatures and heat fluxes, as

well as velocity profiles and pressure distribution,

within the system.

Of course, many improvements to the proposed

algorithm are possible, and will be the subject of

further research. Nevertheless, even in its current

state, the approach described in this paper can
already be used to control the Czochralski crystal

growth process.
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