14 research outputs found

    A severe clinical phenotype of Noonan syndrome with neonatal hypertrophic cardiomyopathy in the second case worldwide with RAF1 S259Y neomutation

    Get PDF
    International audienceNoonan syndrome and related disorders are a group of clinically and genetically heterogeneous conditions caused by mutations in genes of the RAS/MAPK pathway. Noonan syndrome causes multiple congenital anomalies, which are frequently accompanied by hypertrophic cardiomyopathy (HCM). We report here a Tunisian patient with a severe phenotype of Noonan syndrome including neonatal HCM, facial dysmorphism, severe failure to thrive, cutaneous abnormalities, pectus excavatum and severe stunted growth, who died in her eighth month of life. Using whole exome sequencing, we identified a de novo mutation in exon 7 of the RAF1 gene: c.776C > A (p.Ser259Tyr). This mutation affects a highly conserved serine residue, a main mediator of Raf-1 inhibition via phosphorylation. To our knowledge the c.776C > A mutation has been previously reported in only one case with prenatally diagnosed Noonan syndrome. Our study further supports the striking correlation of RAF1 mutations with HCM and highlights the clinical severity of Noonan syndrome associated with a RAF1 p.Ser259Tyr mutation

    <i>Xenopus</i> Oocyte’s Conductance for Bioactive Compounds Screening and Characterization

    No full text
    Background: Astaxanthin (ATX) is a lipophilic compound found in many marine organisms. Studies have shown that ATX has many strong biological properties, including antioxidant, antiviral, anticancer, cardiovascular, anti-inflammatory, neuro-protective and anti-diabetic activities. However, no research has elucidated the effect of ATX on ionic channels. ATX can be extracted from shrimp by-products. Our work aims to characterize ATX cell targets to lend value to marine by-products. Methods: We used the Xenopus oocytes cell model to characterize the pharmacological target of ATX among endogenous Xenopus oocytes&#8217; ionic channels and to analyze the effects of all carotenoid-extract samples prepared from shrimp by-products using a supercritical fluid extraction (SFE) method. Results: ATX inhibits amiloride-sensitive sodium conductance, xINa, in a dose-dependent manner with an IC50 of 0.14 &#181;g, a maximum inhibition of 75% and a Hill coefficient of 0.68. It does not affect the potential of half activation, but significantly changes the kinetics, according to the slope factor values. The marine extract prepared from shrimp waste at 10 &#181;g inhibits xINa in the same way as ATX 0.1 &#181;g does. When ATX was added to the entire extract at 10 &#181;g, inhibition reached that induced with ATX 1 &#181;g. Conclusions: ATX and the shrimp Extract inhibit amiloride-sensitive sodium channels in Xenopus oocytes and the TEVC method makes it possible to measure the ATX inhibitory effect in bioactive SFE-Extract samples

    Subtype-selective activation of K(v)7 channels by AaTXKβ₂₋₆₄, a novel toxin variant from the Androctonus australis scorpion venom.

    No full text
    International audienceK(v)7.4 channel subunits are expressed in central auditory pathways and in inner ear sensory hair cells and skeletal and smooth muscle cells. Openers of K(v)7.4 channels have been suggested to improve hearing loss, systemic or pulmonary arterial hypertension, urinary incontinence, gastrointestinal and neuropsychiatric diseases, and skeletal muscle disorders. Scorpion venoms are a large source of peptides active on K1 channels. Therefore, we have optimized a combined purification/screening procedure to identify specific modulator(s) of K(v)7.4 channels from the venom of the North African scorpion Androctonus australis (Aa). We report the isolation and functional characterization of AaTXK beta((2-64)), a novel variant of AaTXK beta((1-64)), in a high-performance liquid chromatography fraction from Aa venom (named P8), which acts as the first peptide activator of K(v)7.4 channels. In particular, in both Xenopus oocytes and mammalian Chinese hamster ovary cells, AaTXK beta((2-64)), but not AaTXK beta((1-64)), hyperpolarized the threshold voltage of current activation and increased the maximal currents of heterologously expressed K(v)7.4 channels. AaTXK beta((2-64)) also activated K(v)7.3, K(v)7.2/3, and K(v)7.5/3 channels, whereas homomeric K(v)1.1, K(v)7.1, and K(v)7.2 channels were unaffected. We anticipate that these results may prove useful in unraveling the novel biologic roles of AaTXK beta((2-64))-sensitive K(v)7 channels and developing novel pharmacologic tools that allow subtype-selective targeting of K(v)7 channels

    Cross Pharmacological, Biochemical and Computational Studies of a Human Kv3.1b Inhibitor from Androctonus australis Venom

    No full text
    International audienceThe voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases

    Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus.

    No full text
    International audienceHemitoxin (HTX) is a new K+ channel blocker isolated from the venom of the Iranian scorpion Hemiscorpius lepturus. It represents only 0.1% of the venom proteins, and displaces [125 I]alpha-dendrotoxin from its site on rat brain synaptosomes with an IC50 value of 16 nm. The amino acid sequence of HTX shows that it is a 35-mer basic peptide with eight cysteine residues, sharing 29-69% sequence identity with other K+ channel toxins, especially with those of the alphaKTX6 family. A homology-based molecular model generated for HTX shows the characteristic alpha/beta-scaffold of scorpion toxins. The pairing of its disulfide bridges, deduced from MS of trypsin-digested peptide, is similar to that of classical four disulfide bridged scorpion toxins (Cys1-Cys5, Cys2-Cys6, Cys3-Cys7 and Cys4-Cys8). Although it shows the highest sequence similarity with maurotoxin, HTX displays different affinities for Kv1 channel subtypes. It blocks rat Kv1.1, Kv1.2 and Kv1.3 channels expressed in Xenopus oocytes with IC50 values of 13, 16 and 2 nM, respectively. As previous studies have shown the critical role played by the beta-sheet in Kv1.3 blockers, we suggest that Arg231 is also important for Kv1.3 versus Kv1.2 HTX positive discrimination. This article gives information on the structure-function relationships of Kv1.2 and Kv1.3 inhibitors targeting developing peptidic inhibitors for the rational design of new toxins targeting given K+ channels with high selectivity

    Novel ALPK3 mutation in a Tunisian patient with pediatric cardiomyopathy and facio-thoraco-skeletal features.

    No full text
    International audiencePediatric cardiomyopathy is a complex disease with clinical and genetic heterogeneity. Recently, the ALPK3 gene was described as a new hereditary cardiomyopathy gene underlying pediatric cardiomyopathies. Only eight patients carrying mutations in ALPK3 have been reported to date. Here, we report a 3-year-old male patient with both hypertrophic and dilated cardiomyopathy. The patient presented dysmorphic features and skeletal deformities of hands and feet, pectus excavatum, and cleft palate. The genetic investigation was performed by whole-exome sequencing in the patient and his parents. We identified a novel homozygous mutation in ALPK3 (c.1531_1532delAA; p.Lys511Argfs*12). Our work extends the phenotypic spectrum of the ALPK3-associated cardiomyopathy by reporting additional clinical features. This is the first study of a Tunisian patient with mutation in the ALPK3 gene. In conclusion, ALPK3 should be included in the list of genes to be considered in genetic studies for patients affected with pediatric syndromic cardiomyopathy

    BotIT6: a potent depressant insect toxin from Buthus occitanus tunetanus venom.

    No full text
    International audienceA new depressant insect toxin Buthus occitanus tunetanus insect-toxin 6 (BotIT6) was purified by high-performance liquid chromatography from Buthus occitanus tunetanus (Bot) venom. BotIT6 is very active against Blatella germanica (LD50=10ng/100mg body mass) thus being one of the most potent anti-insect toxin so far characterised. When compared to other insect toxin sequences, BotIT6 present high similarities with depressant insect toxins with an additional arginine residue at the C-terminus and a methionine at position 27. The calculated net charge of BotIT6 is positive (+3) whereas it is negative for classical depressant toxins: this might be associated with its high toxicity. Voltage current clump studies show that BotIT6 is not a very potent depressant insect toxin despite its high toxicity in vivo. BotIT6 is able to fully inhibit the specific binding of 125I AaHIT and 125I-BotIT2 on Periplaneta americana synaptosomal membrane vesicles with high affinities. Despite its higher toxicity BotIT6 is a weaker competitor with 125I AaHIT and 125I BotIT2 as compared to the other beta toxins.Altogether, these results may suggest that BotIT6 probably defines a novel sub-group of depressant anti-insect toxins for which the receptor site can be overlapping, but not identical to that for classical depressant insect toxins
    corecore