2,245 research outputs found
Phenomenological three-cluster model of He
By using the method of hyperspherical functions within the appropriate for this method K_{\min} approximation, the simple three-cluster model for description of the ground state and the continuous spectrum states of \6He is developed. It is shown that many properties of \6He (its large rms radius and large values of the matrix elements of electromagnetic transitions from the ground state into the continuous spectrum) follow from the fact that the potential energy of \6He system decreases very slowly (as \rho^{-3}) and the binding energy is small
Variation of the character of spin-orbit interaction by Pt intercalation underneath graphene on Ir(111)
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.The modification of the graphene spin structure is of interest for novel possibilities of application of graphene in spintronics. The most exciting of them demand not only high value of spin-orbit splitting of the graphene states, but non-Rashba behavior of the splitting and spatial modulation of the spin-orbit interaction. In this work we study the spin and electronic structure of graphene on Ir(111) with intercalated Pt monolayer. Pt interlayer does not change the 9.3×9.3 superlattice of graphene, while the spin structure of the Dirac cone becomes modified. It is shown that the Rashba splitting of the π state is reduced, while hybridization of the graphene and substrate states leads to a spin-dependent avoided-crossing effect near the Fermi level. Such a variation of spin-orbit interaction combined with the superlattice effects can induce a topological phase in graphene.The work was partially supported by grants of Saint Petersburg State University for scientific investigations (Grants No. 11.38.271.2014, No. 15.61.202.2015 and No.
11.37.634.2013) and Russian Foundation for Basic Research (RFBR) projects (No. 13-02-91327). We acknowledge the financial support of the University of Basque Country UPV/EHU (Grant No. GIC07-IT-756-13), the Departamento de Educacion del Gobierno Vasco, and the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2010-19609-C02-01), the Spanish Ministry of Economy and Competitiveness
MINECO (Grant No. FIS2013-48286-C2-1-P), and the Tomsk State University Competitiveness Improvement Program.Peer Reviewe
Application of classical simulations for the computation of vibrational properties of free molecules
In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS2, benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I2-1,2-closo-C2B10H10. The MD sampling of NVT ensembles was performed using chains of Nose–Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results
Variation of the character of spin-orbit interaction by Pt intercalation underneath graphene on Ir(111)
The modification of the graphene spin structure is of interest for novel possibilities of application of graphene in spintronics. The most exciting of them demand not only high value of spin-orbit splitting of the graphene states, but non-Rashba behavior of the splitting and spatial modulation of the spin-orbit interaction. In this work we study the spin and electronic structure of graphene on Ir(111) with intercalated Pt monolayer. Pt interlayer does not change the 9.3×9.3 superlattice of graphene, while the spin structure of the Dirac cone becomes modified. It is shown that the Rashba splitting of the π state is reduced, while hybridization of the graphene and substrate states leads to a spin-dependent avoided-crossing effect near the Fermi level. Such a variation of spin-orbit interaction combined with the superlattice effects can induce a topological phase in graphene
Regulation of atrial natriuretic peptide secretion by a novel Ras-like protein
Atrial cardiomyocytes, neurons, and endocrine tissues secrete neurotransmitters and peptide hormones via large dense-core vesicles (LDCVs). We describe a new member of the Ras family of G-proteins, named RRP17, which is expressed specifically in cardiomyocytes, neurons, and the pancreas. RRP17 interacts with Ca2+-activated protein for secretion-1 (CAPS1), one of only a few proteins known to be associated exclusively with LDCV exocytosis. Ectopic expression of RRP17 in cardiomyocytes enhances secretion of atrial natriuretic peptide (ANP), a regulator of blood pressure and natriuresis. Conversely, genetic deletion of RRP17 in mice results in dysmorphic LDCVs, impaired ANP secretion, and hypertension. These findings identify RRP17 as a component of the cellular machinery involved in regulated secretion within the heart and potential mediator of the endocrine influence of the heart on other tissues
The influence of agrotechnologies of organic farming on the content of humus, phosphorus and potassium in the soil
Abstract Organic agriculture is becoming an increasingly popular direction in modern agriculture. At the same time, some researchers and practitioners still have doubts about the ability of this technology to maintain the balance of nutrients in the soil. The article is a contribution to the study of the influence of long-term organic farming on agrochemical soil parameters. The aim of the study was to study the influence of organic farming technology on the content of humus, mobile forms of potassium and mobile forms of phosphorus in the soil of the most important components for fertility – humus, mobile forms of potassium and mobile forms of phosphorus in the non-carbonate chernozems of Western Siberia. The chernozems of Western Siberia are characterized by a high content of humus and nutrients, have optimal properties for agricultural crops. A statistically processed comparison of the quantitative content of humus, mobile forms of potassium and mobile forms of phosphorus in fields with long-term use of organic farming technology, and in similar fields where this technology was not used, was carried out. The article includes a brief geographical, geological, climatic characteristics of the place of the experiment, a description of the applied agricultural technologies and fertilizers. As a result, it was found that the use of organic farming technology has a positive effect on the state of soils, which is confirmed by an increase in the content of humus, mobile forms of potassium and mobile forms of phosphorus
The ATLAS Eventindex using the HBase/Phoenix storage solution
The ATLAS EventIndex provides a global event catalogue and event-level metadata for ATLAS analysis groups and users. The LHC Run 3, starting in 2022, will see increased data-taking and simulation production rates, with which the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. This talk describes the implementation of a new core storage service that will provide at least the same functionality as the current one for increased data ingestion and search rates, and with increasing volumes of stored data. It is based on a set of HBase tables, coupled to Apache Phoenix for data access; in this way we will add to the advantages of a BigData based storage system the possibility of SQL as well as NoSQL data access, which allows the re-use of most of the existing code for metadata integration
- …