64 research outputs found

    Protein kinase C and cardiac dysfunction: a review

    Get PDF
    Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure

    Targeting vascular endothelial growth factor receptor 2 and protein kinase d1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro.

    Get PDF
    Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-alpha -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways

    The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5

    No full text
    How epidermal growth factor receptor (EGFR) signalling is linked to EGFR trafficking is largely unknown. Signalling and trafficking involve small GTPases of the Rho and Rab families, respectively. But it remains unknown whether the signalling relying on these two classes of GTPases is integrated, and, if it is, what molecular machinery is involved. Here we report that the protein Eps8 connects these signalling pathways. Eps8 is a substrate of the EGFR, which is held in a complex with Sos1 by the adaptor protein E3bl (ref. 2), thereby mediating activation of Rac. Through its src homology-3 domain, Eps8 interacts with RN-tre. We show that RN-tre is a Rab5 GTPase-activating protein, whose activity is regulated by the EGFR. By entering in a complex with Eps8, RN-tre acts on Rab5 and inhibits internalization of the EGFR. Furthermore, RN-tre diverts Eps8 from its Rac-activating function, resulting in the attenuation of Rac signalling. Thus, depending on its state of association with E3b1 or RN-tre, Eps8 participates in both EGFR signalling through Rac, and trafficking through Rab5

    Use of the big liquid argon spectrometer BARS for neutrino and cosmic ray studies

    No full text
    The design of the fine grained 300 t liquid argon calorimeter BARS is described. The BARS electronics include about 30 K channels of low noise amplifiers and ADCs. The DAQ system makes it possible to select channels with signals above the chosen threshold. 48 scintillation hodoscopes placed inside the liquid argon are used to form the first level trigger. The total number of scintillation counters in liquid argon is 384. Sums of ionization signals are used to produce the second level trigger. Results of the first use of liquid argon calorimetry for the measurements of tagged neutrino interactions, cosmic-ray muon spectra and composition of extensive atmospheric showers are discussed. (C) 1998 Elsevier Science B.V. All rights reserved
    corecore