5 research outputs found

    Modelling of the evolution of a droplet cloud in a turbulent flow

    Get PDF
    The effects of droplet inertia and turbulent mixing on the droplet number density distribution in a turbulent flow field are studied. A formulation of the turbulent convective diffusion equation for the droplet number density, based on the modified Fully Lagrangian Approach, is proposed. The Fully Lagrangian Approach for the dispersed phase is extended to account for the Hessian of transformation from Eulerian to Lagrangian variables. Droplets with moderate inertia are assumed to be transported and dispersed by large scale structures of a filtered field in the Large Eddy Simulation (LES) framework. Turbulent fluctuations, not visible in the filtered solution for the droplet velocity field, induce an additional diffusion mass flux and hence additional dispersion of the droplets. The Lagrangian formulation of the transport equation for the droplet number density and the modified Fully Lagrangian Approach (FLA) make it possible to resolve the flow regions with intersecting droplet trajectories in the filtered flow field. Thus, we can cope successfully with the problems of multivalued filtered droplet velocity regions and caustic formation. The spatial derivatives for the droplet number density are calculated by projecting the FLA solution on the Eulerian mesh, resulting in a hybrid Lagrangian–Eulerian approach to the problem. The main approximations for the method are supported by the calculation of droplet mixing in an unsteady one-dimensional flow field formed by large-scale oscillations with an imposed small-scale modulation. The results of the calculations for droplet mixing in decaying homogeneous and isotropic turbulence are validated by the results of Direct Numerical Simulations (DNS) for several values of the Stokes number

    Meshless methods for ‘gas ‐ evaporating droplet’ flow modelling

    Get PDF
    The main ideas of simulation of two-phase flows, based on a combination of the conventional Lagrangian method or fully Lagrangian method (FLM) for the dispersed phase and the mesh-free vortex and thermal blob methods for the carrier phase, are summarised. A meshless method for modelling of 2D transient, non-isothermal, gasdroplet flows with phase transitions, based on a combination of the viscous-vortex and thermal-blob methods for the carrier phase with the Lagrangian approach for the dispersed phase, is described. The one-way coupled, two-fluid approach is used in the analysis. The method makes it possible to avoid the `remeshing' procedure (recalculation of flow parameters from Eulerian to Lagrangian grids) and reduces the problem to the solution of three systems of ordinary differential equations, describing the motion of viscous-vortex blobs, thermal blobs, and evaporating droplets. The gas velocity field is restored using the Biot-Savart integral. The numerical algorithm is verified against the analytical solution for a non-isothermal Lamb vortex. The method is applied to modelling of an impulse two-phase cold jet injected into a quiescent hot gas, taking into account droplet evaporation. Various flow patterns are obtained in the calculations, depending on the initial droplet size: (i) low-inertia droplets, evaporating at a higher rate, form ring-like structures and are accumulated only behind the vortex pair; (ii) large droplets move closer to the jet axis, with their sizes remaining almost unchanged; and (iii) intermediate-size droplets are accumulated in a curved band whose ends trail in the periphery behind the head of the cloud, with larger droplets being collected at the front of the two-phase region
    corecore