54 research outputs found

    Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors

    Get PDF
    Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of P(PA )reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. &lt;p/&gt;Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. &lt;p/&gt;Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. &lt;p/&gt;Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    Nitric Oxide Mediates Stretch-Induced Ca2+ Release via Activation of Phosphatidylinositol 3-Kinase-Akt Pathway in Smooth Muscle

    Get PDF
    Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level.Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle

    Concerted Regulation of cGMP and cAMP Phosphodiesterases in Early Cardiac Hypertrophy Induced by Angiotensin II

    Get PDF
    Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored

    Combined Transfer of Human VEGF165 and HGF Genes Renders Potent Angiogenic Effect in Ischemic Skeletal Muscle

    Get PDF
    Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of “single-gene” administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders

    Phosphodiesterase 10A Upregulation Contributes to Pulmonary Vascular Remodeling

    Get PDF
    Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension (PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation. Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%–50% attenuation of the effects on pulmonary hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach for the treatment of PH

    Nuclear cGMP-Dependent Kinase Regulates Gene Expression via Activity-Dependent Recruitment of a Conserved Histone Deacetylase Complex

    Get PDF
    Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1–dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response

    Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart

    Get PDF
    International audienceCyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cAMP and cGMP, thereby regulating multiple aspects of cardiac function. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families which are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP controlling specific cell functions in response to various neurohormonal stimuli. In myocardium, the PDE3 and PDE4 families are predominant to degrade cAMP and thereby regulate cardiac excitation-contraction coupling. PDE3 inhibitors are positive inotropes and vasodilators in human, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important to degrade cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. However, these drugs do not seem efficient in heart failure with preserved ejection fraction. There is experimental evidence that these PDEs as well as other PDE families including PDE1, PDE2 and PDE9 may play important roles in cardiac diseases such as hypertrophy and heart failure. After a brief presentation of the cyclic nucleotide pathways in cardiac cells and the major characteristics of the PDE superfamily, this chapter will present their role in cyclic nucleotide compartmentation and the current use of PDE inhibitors in cardiac diseases together with the recent research progresses that could lead to a better exploitation of the therapeutic potential of these enzymes in the future
    corecore