39 research outputs found

    Wavepacket Motion Via A Conical Intersection In The Photochemistry Of Aqueous Transition-metal Dianions

    Get PDF
    The photochemical reaction paths in aqueous PtBr(6)(2-) and OsBr(6)(2-) have been studied by femtosecond broad-band pump probe spectroscopy supported by CASPT2 and DFT/TDDFT calculations. These paths lead to the separation of negative charges and propagate through distortions of nascent, penta-coordinated metal fragments caused by Jahn-Teller C(4v) and D(3h) conical intersections (CIs), respectively. Within 150 fs following 420 nm excitation of PtBr(6)(2-), the molecule undergoes internal conversion and intersystem crossing into the dissociative lowest triplet excited (3)T(1g) state, loses a ligand, and relaxes via the C(4v) CI to the nearly trigonal bipyramid (3)PtBr(5)(-) product in the triplet state. Direct 530 nm excitation of PtBr(6)(2-) to (3)T(1g) yields. the same product. Oscillations observed in the bending and umbrella a(1) modes of (3)PtBr(5)(-) arise from impulsive excitation of, respectively, one of the reaction coordinate modes, which is parallel to the gradient difference vector of the C(4v) CI, and the spectator mode that preserves the electronic degeneracy

    Structure Of The Photochemical Reaction Path Populated Via Promotion Of Cf2i2 Into Its First Excited State

    Get PDF
    The photochemical reaction path following the promotion of CF2I2 into its lowest-lying excited electronic singlet state has been modeled using ab initio multiconfigurational quantum chemical calculations. It is found that a conical intersection drives the electronically excited CF2I2* species either to the CF2I + I radical pair or back to the starting CF2I2 structure. The structures of the computed relaxation pathways explain the photoproduct selectivity previously observed in the gas phase. Furthermore, the results provide the basis for explaining the condensed-phase photochemistry of CF2I2

    5-azido-2-aminopyridine, A New Nitrene/nitrenium Ion Photoaffinity Labeling Agent That Exhibits Reversible Intersystem Crossing Between Singlet And Triplet Nitrenes

    Get PDF
    The photochemistry of a new photoaffinity labeling (PAL) agent, 5-azido-2-(N,N-diethylamino)pyridine, was studied in aprotic and protic solvents using femtosecond-to-microsecond transient absorption and product analysis, in conjunction with ab initio multiconfigurational and multireference quantum chemical calculations. The excited singlet SI state is spectroscopically dark, whereas photoexcitation to higher-lying singlet excited S-2 and S-3 states drives the photochemical reaction toward a barrierless ultrafast relaxation path via two conical intersections to S-1, where N-2 elimination leads to the formation of the closed-shell singlet nitrene. The singlet nitrene undergoes intersystem crossing (ISC) to the triplet nitrene in aprotic and protic solvents as well as protonation to form the nitrenium ion. The ISC rate constants in aprotic solvents increase with solvent polarity, displaying a direct gap effect, whereas an inverse gap effect is observed in protic solvents. Transient absorption actinometry experiments suggest that a solvent-dependent fraction from 20% to 50% of nitrenium ions is generated on a time scale of a few tens of picoseconds. The closed-shell singlet and triplet nitrene are separated by a small energy gap in protic solvents. As a result, the unreactive triplet state nitrene undergoes delayed, thermally activated reverse ISC to reform the reactive closed-shell singlet nitrene, which subsequently protonates, forming the remaining fraction of nitrenium ions. The product studies demonstrate that the resulting nitrenium ion stabilized by the electron-donating 4-amino group yields the final cross-linked product with high, almost quantitative efficiency. The enhanced PAL function of this new azide with respect to the widely applied 4-amino-3-nitrophenyl azide is discussed

    Development of Fluorescent Isocoumarin‐Fused Oxacyclononyne – 1,2,3‐Triazole Pairs

    Get PDF
    Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3_3-substituted cycloalkyne IC9O-CF3_3

    Stabilization of acromioclavicular joint using DogBone dynamic system (Arthrex): a literature review and long-term follow-up

    Get PDF
    Objectives The purpose of the study was to evaluate long-term follow-ups of stabilized acromioclavicular joint (ACJ) dislocations using button dynamic system applied via arthroscopic technique or mini-open. Material and methods The review included follow-ups of 40 patients (39 males, 1 female) who underwent 40 ACJ stabilization procedures with Arthrex DogBone button between 2014 and 2017 using arthroscopy (n = 28) or mini-open technique (n = 12). The mean age of the patients was 34 years (range, 15 to 59 years). Patient reported outcomes were evaluated with UCLA shoulder rating scale, American Shoulder and Elbow Surgeons (ASES) shoulder score and the Constant Shoulder Score (CSS). Coraco-Clavicular Distance (ССD) was measured on preand postoperative anteroposterior views. Postoperative AP view was used to measure Clavicular Tunnel Distance (CTD). Arthroscopy patients had available preoperative radiographs (n = 21), postoperative radiographs (n = 26) and patient reported outcomes (n = 18). Mini open group had available preoperative radiographs (n = 2), postoperative radiographs (n=8) and patient reported outcomes (n = 8). Results One hundred percent of Arthroscopy/Mini open (26/26) cases were rated as excellent and good on UCLA shoulder rating scale at a long-term follow-up. One hundred percent of Arthroscopy patients (18/18) were rated as excellent and good; 75 % (6/8) of Mini-open cases evaluated as excellent and 25 % (2/8) as good on ASES shoulder score. Sixty seven percent of Arthroscopy (12/18) patients were rated as excellent and 33 % (6/18) as good; 62 % (5/8) of Mini open cases evaluated as excellent and 38 % (3/8) as good. Neither fair nor poor results were observed in both groups. No statistically significant differences were detected in median scores between Arthroscopy and Miniopen groups (p > 0.05). Preoperative radiographs showed Tossy grade IV dislocation (n = 3) and Tossy grade III (n = 20). Distal clavicle fracture was diagnosed in 2 cases. Median preoperative CCD radiologically measured 15.5 mm in both groups (n = 23). Median postoperative CCD and CTD radiologically measured 6.12 mm and 28.9 mm in both groups (n = 35), correspondingly. Decrease in postoperative CCD was significantly different (p = 0.0003). No statistically significant differences in postoperative CCD were detected between Arthroscopy and Miniopen groups (p > 0.05). Statistically significant differences in preoperative CCD were observed in both groups (n = 15) using weight-bearing/no weight-bearing AP views (P = 0.0009). Conclusion Stabilization of dislocated ACJ with dynamic systems is the method of choice providing excellent and good outcomes rated by UCLA rating scale, ASES shoulder score and CSS at long-term follow-up. One-stage surgical treatment is an advantage of dynamic systems with no need of construct removal. Standard and weighted stress radiographs of the involved side indicate to ACJ injury in comparison with contralateral side. Further research is needed for a longer term follow-up with the bone reduction maintained with dynamic system

    A Comparative Study of Modern Homology Modeling Algorithms for Rhodopsin Structure Prediction

    Get PDF
    Rhodopsins are seven α-helical membrane proteins that are of great importance in chemistry, biology, and modern biotechnology. Any in silico study on rhodopsin properties and functioning requires a high-quality three-dimensional structure. Due to particular difficulties with obtaining membrane protein structures from the experiment, in silico prediction of the three-dimensional rhodopsin structure based only on its primary sequence is an especially important task. For the last few years, significant progress was made in the field of protein structure prediction, especially for methods based on comparative modeling. However, the majority of this progress was made for soluble proteins and further investigations are needed to achieve similar progress for membrane proteins. In this paper, we evaluate the performance of modern protein structure prediction methodologies (implemented in the Medeller, I-TASSER, and Rosetta packages) for their ability to predict rhodopsin structures. Three widely used methodologies were considered: two general methodologies that are commonly applied to soluble proteins and a methodology that uses constraints that are specific for membrane proteins. The test pool consisted of 36 target-template pairs with different sequence similarities that was constructed on the basis of 24 experimental rhodopsin structures taken from the RCSB database. As a result, we showed that all three considered methodologies allow obtaining rhodopsin structures with the quality that is close to the crystallographic one (root mean square deviation (RMSD) of the predicted structure from the corresponding X-ray structure up to 1.5 Å) if the target-template sequence identity is higher than 40%. Moreover, all considered methodologies provided structures of average quality (RMSD < 4.0 Å) if the target-template sequence identity is higher than 20%. Such structures can be subsequently used for further investigation of molecular mechanisms of protein functioning and for the development of modern protein-based biotechnologies

    Influence of Posterior Tibial Slope on the Risk of Recurrence After Anterior Cruciate Ligament Reconstruction

    Get PDF
    Background. Anterior cruciate ligament (ACL) graft rupture has multifactorial causes, with traumatic factors being the most prevalent. Modern literature presents conflicting data regarding the influence of the posterior tibial slope on the risk of traumatic ACL graft rupture. Aim of the study to determine if there is a correlation between the posterior tibial slope and ACL graft injury in patients who have previously undergone ACL reconstruction. Methods. This was a single-center cohort retrospective study that included patients diagnosed with a complete ACL rupture and who had undergone ACL reconstruction using standard techniques without graft rupture at the last follow-up. Inclusion criteria for the first group included a diagnosis of traumatic ACL rupture followed by reconstruction, a graft composed of semitendinosus and gracilis tendons (St+Gr), femoral fixation with a cortical button, tibial fixation with a sleeve and screw, and the absence of graft rupture at the time of the study. This group included 30 consecutive patients (15 males and 15 females) with a mean age of 36.3 years (min 17, max 59). Inclusion criteria for the second group included an indirect traumatic mechanism of ACL graft rupture and subsequent revision ACL reconstruction. This group consisted of 33 patients (23 males and 10 females) with a mean age of 33.0 years (min 19, max 60). The lateral (LPTS) and medial (MPTS) posterior tibial slopes were measured on lateral knee radiographs. Results. The median time from surgery to the last follow-up in the first group was 65 months (IQR 60; 66), while in the second group, it was 48 months (IQR 9; 84). The median MPTS in the first group was 7.8 (IQR 5.3; 9.4), while in the second group, it was 8.5 (IQR 7.5; 11). The median LPTS in the first group was 9.9 (IQR 8.4; 12.1), whereas in the second group, it was 12.0 (IQR 9; 15.4). There was no statistically significant difference in MPTS and LPTS based on gender in both groups and the entire sample (p0.05). When comparing LPTS values between both groups, a statistically significant difference (p = 0.04) was found, with higher LPTS values in patients in the second group (with ACL graft injury). Conclusion. Increased posterior tibial slope, particularly LPTS, is identified as a potential predictor of ACL graft rupture. The study demonstrates the impact of LPTS on the risk of ACL graft rupture (p0.05) in cases of indirect traumatic injury

    Computational Investigation of the Photoisomerization of Novel N-Alkylated Indanylidene Pyrroline Biomimetic Switches

    No full text
    The biological function of Rhodopsin (Rh), the G-protein-coupled photoreceptor responsible for twilight vision in vertebrates, is based on a very efficient process of photo-isomerization in the 11-cis retinal protonated Schiff base (PSB11) that is covalently linked to an apoprotein: opsin. The role of the opsin in the efficiency of the process is dramatical and PSB11 that is isolated from the protein environment (i.e., in methanol solution) exhibits different photo-chemical properties. When considering possible applications, the photo-isomerization is the process that can be used to change the properties of the system by means of an external light stimulus (photo-switches) or to exploit the light energy into unidirectional motion at the molecular level (molecular motors). N-alkylated indanylidene pyrroline (NAIP) switches are compounds that are designed to mimic, in solution, several aspects of the photochemistry of Rhodopsin. In this work, both the photoisomerization process of NAIP-switches, and the photochemistry of PSB11 in the opsin environment are investigated. The ab initio multi-configurational QM/MM approach (CASPT2//CASSCF/AMBER) is supported by time-resolved spectroscopy studies. Results show that NAIP switches exhibit several properties similar to that of Rhodopsin, such as stereoselectivity of the photo-isomerization , unidirectional motion, a sub-picosecond life time, and a barierless Minimum Energy Path leading from FC point to Conical Intersection. These properties make these compounds promising photo-switches or molecular motors. However, in spite of these remarkable similarities, the quantum yield of the photoisomerization of NAIPs is 2 to 3 times lower then that of Rh. These facts suggest that NAIPs not only provide a route to new materials but that they also constitute attractive systems for the investigation of fundamental problems such as the relationship between excited-state evolution and quantum yields. The invesigation of the dynamics of photo-isomerization of Rh and bathoRh provided in the second part of this thesis can be considered to be the first step in understanding the factors that are responsible for the quantum yield of the process

    Color Tuning in Rhodopsins: The Origin of the Spectral Shift between the Chloride-Bound and Anion-Free Forms of Halorhodopsin

    No full text
    Detailed knowledge of the molecular mechanisms that control the spectral properties in the rhodopsin protein family is important for understanding the functions of these photoreceptors and for the rational design of artificial photosensitive proteins. Here we used a high-level ab initio QM/MM method to investigate the mechanism of spectral tuning in the chloride-bound and anion-free forms of halorhodopsin from Natronobacterium pharaonis (phR) and the interprotein spectral shift between them. We demonstrate that the chloride ion tunes the spectral properties of phR via two distinct mechanisms: (i) electrostatic interaction with the chromophore, which results in a 95 nm difference between the absorption maxima of the two forms, and (ii) induction of a structural reorganization in the protein, which changes the positions of charged and polar residues and reduces this difference to 29 nm. The present study expands our knowledge concerning the role of the reorganization of the internal H-bond network for color tuning in general and provides a detailed investigation of the tuning mechanism in phR in particular

    Structure of the Photochemical Reaction Path Populated via Promotion of CF2I2into Its First Excited State

    Get PDF
    The photochemical reaction path following the promotion of CF2I2 into its lowest-lying excited electronic singlet state has been modeled using ab initio multiconfigurational quantum chemical calculations. It is found that a conical intersection drives the electronically excited CF2I2* species either to the CF2I + I radical pair or back to the starting CF2I2 structure. The structures of the computed relaxation pathways explain the photoproduct selectivity previously observed in the gas phase. Furthermore, the results provide the basis for explaining the condensed-phase photochemistry of CF2I2
    corecore