336 research outputs found
Performance of Active Vibration Isolation in the Advanced LIGO Detectors
The second generation of LIGO detectors has finished construction and the commissioning effort is pushing the instruments towards their designed sensitivity. Around the world similar undertakings are underway, and soon a global network capable of astrophysical observation will be operational. The first sentences are being written in an important chapter of terrestrial gravitational wave detection, an entire century after the theoretical foundations of general relativity were laid, and after decades of calculation, design, proposals, plans, and laboratory work. In order to make sensitive measurements, the detector must be well isolated from the vibrations of the ground, and much of this thesis describes the effectiveness of active control platforms used to mitigate the transmission of seismic motions to the test masses. This work was performed both during the last science run of the first generation LIGO detector and as part of the commissioning of the second generation instrument
Global feed-forward vibration isolation in a km scale interferometer
Using a network of seismometers and sets of optimal filters, we implemented a feed-forward control technique to minimize the seismic contribution to multiple interferometric degrees of freedom of the Laser Interferometer Gravitational-wave Observatory interferometers. The filters are constructed by using the Levinson–Durbin recursion relation to approximate the optimal Wiener filter. By reducing the RMS of the interferometer feedback signals below ~10 Hz, we have improved the stability and duty cycle of the joint network of gravitational wave detectors. By suppressing the large control forces and mirror motions, we have dramatically reduced the rate of non-Gaussian transients in the gravitational wave signal stream
Observation of Parametric Instability in Advanced LIGO
Parametric instabilities have long been studied as a potentially limiting
effect in high-power interferometric gravitational wave detectors. Until now,
however, these instabilities have never been observed in a kilometer-scale
interferometer. In this work we describe the first observation of parametric
instability in an Advanced LIGO detector, and the means by which it has been
removed as a barrier to progress
The advanced LIGO input optics
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design
The Advanced LIGO Input Optics
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude
- …