3,126 research outputs found
Helium atom diffraction measurements of the surface structure and vibrational dynamics of CH_3-Si(111) and CD_3-Si(111) surfaces
The surface structure and vibrational dynamics of CH_3–Si(111) and CD_3–Si(111) surfaces were measured using helium atom scattering. The elastic diffraction patterns exhibited a lattice constant of 3.82 Å, in accordance with the spacing of the silicon underlayer. The excellent quality of the observed diffraction patterns, along with minimal diffuse background, indicated a high degree of long-range ordering and a low defect density for this interface. The vibrational dynamics were investigated by measurement of the Debye–Waller attenuation of the elastic diffraction peaks as the surface temperature was increased. The angular dependence of the specular (θ_i=θ_f) decay revealed
perpendicular mean-square displacements of 1.0 x 10^(−5) Å^2 K^(−1) for the CH_3–Si(111) surface and 1.2 x 10^(−5) Å^2 K^(−1) for the CD_3–Si(111) surface, and a He-surface attractive well depth of ~7 meV. The effective surface Debye temperatures were calculated to be 983 K for the CH_3–Si(111) surface and 824 K for the CD_3–Si(111) surface. These relatively large Debye temperatures suggest that collisional energy accommodation at the surface occurs primarily through
the Si–C local molecular modes. The parallel mean-square displacements were 7.1 x 10^(−4) and 7.2 x 10^(−4) Å^2 K^(−1) for the CH_3–Si(111) and CD_3–Si(111) surfaces, respectively. The observed increase in thermal motion is consistent with the interaction between the helium atoms and Si–CH_3 bending modes. These experiments have thus yielded detailed information on the dynamical properties of these robust and technologically interesting semiconductor interfaces
[OII] emitters in the GOODS field at z~1.85: a homogeneous measure of evolving star formation
We present the results of a deep, near-infrared, narrow band imaging survey
at a central wavelength of 1.062 microns (FWHM=0.01 microns) in the GOODS-South
field using the ESO VLT instrument, HAWK-I. The data are used to carry out the
highest redshift search for [OII]3727 emission line galaxies to date. The
images reach an emission line flux limit (5 sigma) of 1.5 x 10^-17 erg cm^-2
s^-1, additionally making the survey the deepest of its kind at high redshift.
In this paper we identify a sample of [OII]3727 emission line objects at
redshift z~1.85 in a co-moving volume of ~4100 Mpc^3. Objects are selected
using an observed equivalent width (EW_obs) threshold of EW_obs = 50 angstroms.
The sample is used to derive the space density and constrain the luminosity
function of [OII] emitters at z=1.85. We find that the space density of objects
with observed [OII] luminosities in the range log(L_[OII]) > 41.74 erg s^-1 is
log(rho)=-2.45+/-0.14 Mpc^-3, a factor of 2 greater than the observed space
density of [OII] emitters reported at z~1.4. After accounting for completeness
and assuming an internal extinction correction of A_Halpha=1 mag (equivalent to
A_[OII]=1.87), we report a star formation rate density of rho* ~0.38+/-0.06
Msun yr^-1 Mpc^-3. We independently derive the dust extinction of the sample
using 24 micron fluxes and find a mean extinction of A_[OII]=0.98+/-0.11
magnitudes (A_Halpha=0.52). This is significantly lower than the A_Halpha=1
(A[OII]=1.86) mag value widely used in the literature. Finally we incorporate
this improved extinction correction into the star formation rate density
measurement and report rho*~0.24+/-0.06 Msun yr^-1 Mpc^-3.Comment: 11 pages, 10 figures, accepted for publication in MNRA
Recommended from our members
Nonlinear Approximations in Filter Design and Wave Propagation
This thesis has two parts. In both parts we use nonlinear approximations to obtain accurate solutions to problems where traditional numerical approaches rapidly become computationally infeasible.
The first part describes a systematic method for designing highly accurate and efficient infinite impulse response (IIR) and finite impulse response (FIR) filters given their specifications. In our approach, we first meet the specifications by constructing an IIR filter, without requiring the filter to be causal, and possibly with a large number of poles. We then construct, for any given accuracy, an optimal IIR version of such filter. Finally, also for any given accuracy, we convert the IIR filter to an efficient FIR filter cascade. In this FIR approximation, the non-causal part of the IIR filter only introduces an additional delay. Because our IIR construction does not have to enforce causality, the filters we design are more efficient than filters designed by existing methods.
The second part describes a fast algorithm to propagate, for any desired accuracy, a time-harmonic electromagnetic field between two planes separated by free space. The analytic formulation of this problem (circa 1897) requires the evaluation of the Rayleigh-Sommerfeld integral. If the distance between the planes is small, this integral can be accurately evaluated in the Fourier domain; if the distance is large, it can be accurately approximated by asymptotic methods. The computational difficulties arise in the intermediate region where, in order to obtain an accurate solution, it is necessary to apply the oscillatory Rayleigh-Sommerfeld kernel as is. In our approach, we accurately approximate the kernel by a short sum of Gaussians with complex exponents and then efficiently apply the result to input data using the unequally spaced fast Fourier transform. The resulting algorithm has the same computational complexity as methods based on the Fresnel approximation. We demonstrate that while the Fresnel approximation may provide adequate accuracy near the optical axis, the accuracy deteriorates significantly away from the optical axis. In contrast, our method maintains controlled accuracy throughout the entire computational domain
PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.
Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets
High-performance Si microwire photovoltaics
Crystalline Si wires, grown by the vapor–liquid–solid (VLS)
process, have emerged as promising candidate materials for lowcost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (L_n » 30 µm) and low surface recombination velocities (S « 70 cm·s^(-1)). Single-wire radial p–n junction solar cells were fabricated with amorphous silicon and silicon nitride
surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics
Si microwire-array solar cells
Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J_(sc)) of up to 24 mA cm^(-2), and fill factors >65% and employed Al_2O_3 dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN_x:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J_(sc). Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J_(sc) of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements
Anomalous solute transport in saturated porous media:linking transport model parameters to electrical and nuclear magnetic resonance properties
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT
- …