505 research outputs found

    Novel muon imaging techniques

    Get PDF
    Owing to the high penetrating power of high-energy cosmic ray muons, muon imaging techniques can be used to image large bulky objects, especially objects with heavy shielding. Muon imaging systems work just like CT scanners in the medical imaging field—that is, they can reveal information inside of a target. There are two forms of muon imaging techniques: muon absorption imaging and muon multiple scattering imaging. The former is based on the flux attenuation of muons, and the latter is based on the multiple scattering of muons in matter. The muon absorption imaging technique is capable of imaging very large objects such as volcanoes and large buildings, and also smaller objects like spent fuel casks; the muon multiple scattering imaging technique is best suited to inspect smaller objects such as nuclear waste containers. Muon imaging techniques can be applied in a broad variety of fields, i.e. from measuring the magma thickness of volcanoes to searching for secret cavities in pyramids, and from monitoring the borders of countries checking for special nuclear materials to monitoring the spent fuel casks for nuclear safeguards applications. In this paper, the principles of muon imaging are reviewed. Image reconstruction algorithms such as Filtered Back Projection and Maximum Likelihood Expectation Maximization are discussed. The capability of muon imaging techniques is demonstrated through a Geant4 simulation study for imaging a nuclear spent fuel cask

    The influence of maternal health factors including multimorbidity on child oral health:A scoping review and evidence gap map protocol

    Get PDF
    Read the latest article version by Faith Campbell, Scott McGregor, Louise Marryat, Ryan Stewart, Jan Clarkson, Heather Cassie at Wellcome Open Researc

    Carbon monoxide poisoning: novel magnetic resonance imaging pattern in the acute setting

    Get PDF
    The presentation of carbon monoxide (CO) poisoning is non-specific and highly variable. The diagnosis is made when a compatible history and examination occur in a patient with elevated carboxyhaemoglobin levels. The severity of intoxication is difficult to assess accurately based on laboratory markers alone. Magnetic resonance imaging (MRI) has been shown to have superior sensitivity to computed tomography for the detection of abnormalities post CO poisoning. We report a novel imaging pattern on MRI undertaken in the acute setting in a patient with CO intoxication. We also discuss the management and follow up of patients with CO poisoning

    Carbon monoxide poisoning: Novel magnetic resonance imaging pattern in the acute setting

    Get PDF
    The presentation of carbon monoxide (CO) poisoning is non-specific and highly variable. The diagnosis is made when a compatible history and examination occur in a patient with elevated carboxyhaemoglobin levels. The severity of intoxication is difficult to assess accurately based on laboratory markers alone. Magnetic resonance imaging (MRI) has been shown to have superior sensitivity to computed tomography for the detection of abnormalities post CO poisoning. We report a novel imaging pattern on MRI undertaken in the acute setting in a patient with CO intoxication. We also discuss the management and follow up of patients with CO poisoning

    Atomic-scale control of magnetic anisotropy via novel spin-orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices

    Full text link
    Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e. magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry. Extrinsic control over the MA is usually achieved by introducing shape anisotropy or exchange bias from another magnetically ordered material. Here we demonstrate a pathway to manipulate MA of 3d transition metal oxides (TMOs) by digitally inserting non-magnetic 5d TMOs with pronounced spin-orbit coupling (SOC). High quality superlattices comprised of ferromagnetic La2/3Sr1/3MnO3 (LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control of thickness at atomic scale. Magnetic easy axis reorientation is observed by controlling the dimensionality of SIO, mediated through the emergence of a novel spin-orbit state within the nominally paramagnetic SIO.Comment: Proceedings of the National Academy of Sciences, May 201

    Cost-effectiveness of child caries management: a randomised controlled trial (FiCTION trial)

    Get PDF
    Background: A three-arm parallel group, randomised controlled trial set in general dental practices in England, Scotland, and Wales was undertaken to evaluate three strategies to manage dental caries in primary teeth. Children, with at least one primary molar with caries into dentine, were randomised to receive Conventional with best practice prevention (C + P), Biological with best practice prevention (B + P), or best practice Prevention Alone (PA). Methods: Data on costs were collected via case report forms completed by clinical staff at every visit. The coprimary outcomes were incidence of, and number of episodes of, dental pain and/or infection avoided. The three strategies were ranked in order of mean cost and a more costly strategy was compared with a less costly strategy in terms of incremental cost-effectiveness. Costs and outcomes were discounted at 3.5%. Results: A total of 1144 children were randomised with data on 1058 children (C + P n = 352, B + P n = 352, PA n = 354) used in the analysis. On average, it costs £230 to manage dental caries in primary teeth over a period of up to 36 months. Managing children in PA was, on average, £19 (97.5% CI: -£18 to £55) less costly than managing those in B + P. In terms of effectiveness, on average, there were fewer incidences of, (− 0.06; 97.5% CI: − 0.14 to 0.02) and fewer episodes of dental pain and/or infection (− 0.14; 97.5% CI: − 0.29 to 0.71) in B + P compared to PA. C + P was unlikely to be considered cost-effective, as it was more costly and less effective than B + P. Conclusions: The mean cost of a child avoiding any dental pain and/or infection (incidence) was £330 and the mean cost per episode of dental pain and/or infection avoided was £130. At these thresholds B + P has the highest probability of being considered cost-effective. Over the willingness to pay thresholds considered, the probability of B + P being considered cost-effective never exceeded 75%. Trial registration: The trial was prospectively registered with the ISRCTN (reference number ISRCTN77044005) on the 26th January 2009 and East of Scotland Research Ethics Committee provided ethical approved (REC reference: 12/ES/0047)

    A hydrothermally stable Ytterbium metal-organic framework as a bifunctional solid-acid catalyst for glucose conversion

    Get PDF
    Yb6(BDC)7(OH)4(H2O)4 contains both bridging hydroxyls and metal-coordinated waters, possessing Brønsted and Lewis acid sites. The material crystallises from water at 200C. Using the solid as a heterogenous catalyst, glucose is converted into 5-hydroxymethylfurfural, via fructose, with a total selectivity of ~70 % after 24 hours at 140 C in water alone: the material is recyclable with no loss of crystallinity

    Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field

    Get PDF
    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high resolution (R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulge formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe] and to a lesser extent [La/Fe] abundances further indicate that the metal-poor bulge, at least at ~1 kpc from the Galactic center, and thick disk may not share an identical chemistry.Comment: Accepted for publication in ApJ; 66 pages, 17 figures, 3 tables; prior to publication, data tables in electronic form will be made available upon reques
    • …
    corecore