56,097 research outputs found

    Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus

    Get PDF
    In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall

    Integrating Geriatrics in Primary Care: Progress and Prospects

    Get PDF
    Educational Objectives 1. Demonstrate the need for primary care redesign to better meet the needs of older patients. 2. Identify prospective redesign solutions. 3. Appreciate educational implication that redesign engenders

    Three path interference using nuclear magnetic resonance: a test of the consistency of Born's rule

    Full text link
    The Born rule is at the foundation of quantum mechanics and transforms our classical way of understanding probabilities by predicting that interference occurs between pairs of independent paths of a single object. One consequence of the Born rule is that three way (or three paths) quantum interference does not exist. In order to test the consistency of the Born rule, we examine detection probabilities in three path intereference using an ensemble of spin-1/2 quantum registers in liquid state nuclear magnetic resonance (LSNMR). As a measure of the consistency, we evaluate the ratio of three way interference to two way interference. Our experiment bounded the ratio to the order of 10−3±10−310^{-3} \pm 10^{-3}, and hence it is consistent with Born's rule.Comment: 11 pages, 4 figures; Improved presentation of figures 1 and 4, changes made in section 2 to better describe the experiment, minor changes throughout, and added several reference

    Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

    Get PDF
    We have integrated lithographically patterned VO2 thin films grown by pulsed laser deposition with silicon-on-insulator photonic waveguides to demonstrate a compact in-line absorption modulator for use in photonic circuits. Using single-mode waveguides at λ = 1550 nm, we show optical modulation of the guided transverse-electric mode of more than 6.5 dB with 2 dB insertion loss over a 2-µm active device length. Loss is determined for devices fabricated on waveguide ring resonators by measuring the resonator spectral response, and a sharp decrease in resonator quality factor is observed above 70 °C, consistent with switching of VO_2 to its metallic phase. A computational study of device geometry is also presented, and we show that it is possible to more than double the modulation depth with modified device structures

    Continuous Theta Rhythm During Spatial Working Memory Task in Rodent Models of Streptozotocin-induced Type 2 Diabetes

    Full text link
    Alzheimer’s disease is a neurodegenerative disorder altering memory loss thought to be due to neuropathological symptoms such as the buildup of beta amyloid plaques (Ab) and neurofibrillary tangles (NFT). The etiology of Alzheimer’s is still unknown; however, potential risk factors such as diabetes may lead to its development. The most common form of diabetes is type 2 diabetes known for persistent insulin resistance leading to a state of hyperglycemia. Insulin resistance has been shown to affect cognitive abilities such as learning, memory and also alters synaptic plasticity. Neural connections between the hippocampus (HC) and anterior cingulate cortex (ACC) are known to be very important for learning and memory and are highly plastic, making them an intriguing target that could be altered by hyperglycemia. We hypothesize that hyperglycemic rodents will exhibit spatial memory deficits that may be associated with cognitively linked interactions between the HC and ACC. Minimal doses of streptozotocin (STZ), which is toxic to insulin producing beta cells, were given for 9-10 weeks. Using a spatial working memory task known as delayed alternation we found significant differences between control and experimental rats in working memory accuracy. This task places strong working memory demands on subjects which may be compromised by a hyperglycemic state. We measured EEG recordings from the HC and ACC during task performance and found that hyperglycemic rats had nearly continuous theta rhythm during the 30-minute session. Control rats however, displayed normal transitions between theta and lower frequency delta. Neural connectivity may be altered due to a change in frequency activity between the HC and ACC due to diabetes which is a risk factor in the development of AD impairments. These results show that hyperglycemia leads to changes along the circuit critical for learning and memory

    The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    Get PDF
    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented

    Finite Dimensional Statistical Inference

    Full text link
    In this paper, we derive the explicit series expansion of the eigenvalue distribution of various models, namely the case of non-central Wishart distributions, as well as correlated zero mean Wishart distributions. The tools used extend those of the free probability framework, which have been quite successful for high dimensional statistical inference (when the size of the matrices tends to infinity), also known as free deconvolution. This contribution focuses on the finite Gaussian case and proposes algorithmic methods to compute the moments. Cases where asymptotic results fail to apply are also discussed.Comment: 14 pages, 13 figures. Submitted to IEEE Transactions on Information Theor

    Development of advanced fabrication techniques for regeneratively cooled thrust chambers by the gas-pressure-bonding process Final report, 29 Jun. 1967 - 30 Apr. 1970

    Get PDF
    Production of regeneratively cooled rocket thrust chambers by removable tooling and subsequent hot isostatic pressing in gas autoclav
    • …
    corecore